THE BOOK OF THE SALMON:
IN TWO PARTS.

Part I.
The theory, principles, and practice of fly-fishing for salmon; with lists of salmon-flies for every good river in the empire.

Part II.
The natural history of the salmon, all its known habits described, and the best way of artificially breeding it explained.

Usefully illustrated with numerous coloured engravings of salmon-flies, and salmon-fry.

BY EPHEMERA,
Author of "A Handbook of Angling;"

ASSISTED

BY ANDREW YOUNG,
Of Invershin, Manager of the Duke of Sutherland's salmon-fisheries.

LONDON:
LONGMAN, BROWN, GREEN, AND LONGMANS,
PATERNOSTER-ROW.
1850.
THE FOLLOWING PAGES,
ESPECIALLY THOSE WHICH TREAT OF THE NATURAL
HISTORY OF SALMON,
ARE,
BY PERMISSION, GRATEFULLY INSCRIBED TO

HIS GRACE THE DUKE OF SUTHERLAND, K.G.

IN TESTIMONY OF
THE ADMIRATION IN WHICH HE IS HELD,
FOR HIS ENLIGHTENED AND LIBERAL ADMINISTRATION
OF HIS PRINCELY LAND AND WATER
POSSESSIONS,—

BY

HIS OBLIGED AND DEVOTED SERVANT,

THE AUTHOR.

London, March 1850.
I have been for a long time exceedingly desirous of rendering fly-fishing for salmon more accessible to the public than it has hitherto been; and for some years past have been making advances, step by step, towards the consummation of my wishes. I do not think myself unknown to the majority of the angling community; perhaps I have a right to flatter myself that I am favourably known to them, for my zeal at least, if not for my actual services, in their cause; and, if they will consent to tax their memory a little, they will perceive that, both in my periodical writings and in my books, I have been steadily preparing the way for the more facile and general acquisition of the higher branches of angling. Heretofore my piscatorial prolixions may, in some sort, be
regarded as angling *analecta minora*; the present ones as *analecta majora*. After the *Delectus* comes the *Gradus ad Parnassum*—after prose composition come the Porson prize and Sapphics.

I like method, and on it I broke ground, in "A Handbook of Angling." I began with elements and concluded with principles and practice. I took my pupils to an angling academy, and fitted them for matriculation in any piscatory university. There I now have them; and if I have succeeded in initiating them into the mystery and craft of angling for the trout and carp tribes, and I assume that I have done so, I now deem it high time to endeavour to put the last polish on their "halieutics," by exercises on the "high art" capture of salmon, and by correct theses on the history and habits of that pride of our fluvial families.

I self-constitute myself, as it were, a regius piscatorial professor. I have been a public tutor in the art these fourteen years, and to enable me to obtain a higher degree, to fit myself for the professorial chair, I returned to college again last year, and passed a very studious term in the
famous piscatory university of Scotland. The term was mainly occupied in inquiry, observation, and practice—in conversations, consultations, and friendly disputations with the great masters and practical teachers of the North. I merely mention this to show, that although I am a self-elected teacher, I have tried hard not to deserve being called an idle, or an ignorant one. I shall state briefly the results of my studies.

The **First** part of this book will be found to consist of a code of rules for the practice of pure fly-fishing for salmon. I presume the student to be already proficient in the art of fly-fishing for trout, and taking him at that point of progress, I place in his hands the salmon-rod. I tell him of what materials it is to be made; of what size and shape it is to be; and I describe the winch and lines best suited for it. I tell him then how to use it, whether for casting the fly, humouring the fly on the water, or striking, hooking, or playing a salmon. I show him how a salmon river is to be fished, and where and when to the best advantage.
Having done all this with elaborate minuteness, I proceed to describe the flies the salmon-fisher must use. To render the description more intelligible, fifteen model flies have been engraved and coloured. Thirteen are after patterns made by Mr. Blacker, of 54, Dean-Street, Soho, which I have myself successfully tested; and two are after favourite patterns kindly sent me, by a gentleman connected with the Foreign Office, and an excellent salmon fisher. These models will furnish a correct idea of what salmon-flies ought to be, generally speaking, in colour, shape, and size.

The list of flies described is the largest, and I think I may say the best, ever published. It embraces general flies of my own selection, and local flies, the patterns of which I have had from the best recognized authorities. For the Tweed, Mr. Forrest, of Kelso, has dressed for me the best standard flies; for the rivers of Sutherland-shire, and for nearly all the rivers of Scotland, Mr. Dunbar, of Loch-Inver, has made me the best patterns, and described the rivers for which they are suited, and the fit season for using them;
and Mr. Flinn, of Worcester, has dressed for me the local flies for Wales. The flies for the rivers of the south of Ireland, are after patterns by W. K. Rogers, Esq., of Cork, one of the most accomplished salmon anglers of my acquaintance; and those for the north of Ireland, are made by Mr. Blacker.

I have taken care to mention the materials that enter into the composition of salmon-flies, and given recipes for the dyeing of wools, furs, silk, and feathers of all those various colours required by the fly-dresser. I have had a plate of salmon-hooks engraved, to show their shapes and sizes, from the largest to the smallest, and have named the best maker of them.

The Second part of the volume is occupied with the natural history of the Salmon, including a minute detail of its habits, with coloured plates, representing the growth of Salmon-fry, and with a chapter on the surest means of breeding that fish artificially. I can recommend, without the slightest assumption of vanity, this part of the book to the attention of the naturalist, as well as to the
study of the intelligent angler. It embraces by far the fullest and truest history of the *Salmo salar* as yet extant. It is the work, substantially, of Mr. Andrew Young of Invershin; in my opinion, the greatest living authority on the subject. The circumstances under which I have obtained from him the facts adduced are stated elsewhere; but I am responsible for the manner in which they are narrated, for a few trifling addenda to them, and for some arguments and deductions that naturally flowed from them.

Lest it may be supposed that I have formed an exclusively high opinion of the acquirements and abilities of my friendly coadjutor, I have permission to make known the estimation in which he is held by one of the foremost noblemen in the kingdom. In reply to a letter soliciting at the hands of his Grace the Duke of Sutherland the honour of inscribing this little work to him, his Grace, with characteristic kindness, wrote to me as follows:—
"Dunrobin, October 6. 1849.

"SIR,

"I have to acknowledge the receipt of your letter, and to thank you for the obliging compliment you offer.

"I wish I were better entitled to it, by entering personally into the details which make the pursuits of the Angler so delightful to him, as I know to be the case in the instance of many of my friends and family, and have full reason to know is more generally so to others.

"I am persuaded that the work you propose will be highly interesting, as the subject is not confined to the sport; and the natural history, written by an intelligent observer, after much experience, and observation of the Salmon, cannot fail to deserve attention, and to be attractive for all readers.

"I am glad that Mr. A. Young's merits should be appreciated properly. I think highly of him, and hope that a change of arrangements, which I intend in regard to the future affairs of the Fishings, may secure the continuance of his care
of the Shin fishing, with a prospect of advantage to himself, which I should much desire.

"I am very glad that you should have had enjoyment on the Shin, and hope that you may continue to have good sport in Sutherland.

"I can have no hesitation in accepting your offer, made, as I consider it to be, in so friendly a manner.

"I am, Sir,

"Your obedient servant,

"Sutherland."

I have to hope, and I have done all in my power to realise my aspirations, that the public will ratify the flattering anticipations of his Grace.

The errors of previous writers on the history and habits of the Salmon, satisfactorily, to my mind, corrected by Mr. Young, are too numerous and important for prefatorial enumeration. They must be read in the text, and afterwards carefully digested, to be appreciated.
CONTENTS.

PART I.

CHAPTER I.

In laud of Fly-fishing for Salmon—Pleasant Reminiscences and Anticipations of—The Salmon-fisher's Rod—Its Size, Make, and Material—Winches—Salmon-lines—Of what Material, and in what Way, they should be made—Their length—Gut Casting-lines—A model one—The Quality of Gut—Caution about Winch and Casting-lines—Page 1

CHAPTER II.

Throwing the Line and Fly described—How the Rod is to be held and wielded in casting the Line—The back-handed Cast—The left and right Shoulder Cast—Straight Casting eulogised—Mr. Scrope's Way of Casting—Mr. Stoddart's Method—How to become ambidexter—The under-handed Cast—The "Welsh Throw"—The Metropolitan straight Cast—Under-handed Casting described and commended—Page 20
CHAPTER III.

Working the Salmon-fly through the Water—Mischief of rapidly working it—Experiments recently made—A fascinating Manœuvre—Appearance of the Fly in the Water—Rendering a long Cast perfect—Hooking a Salmon—Reasons for striking gently—Effects of violent striking—Striking sideways recommended—A practical Angling Lesson—Success of gentle Striking—Grilse stronger than Salmon—Effects of Fresh Water on Salmon—Rules for playing a Salmon—Playing one under Difficulties—How to stop a fleeing Salmon—Salmon-somersets, how dealt with—How to fish a Salmon-river—Up-river Fishing recommended—What Spots should be fished—Angling-pilots—Favourite Haunts of Salmon—When Salmon rise best—Best Hours for Salmon-fishing

CHAPTER IV.

Page 39

67
PART II.

CHAPTER I.

CHAPTER II.

Artificial Breeding of Salmon—Artificial Ponds, Pond-beds, and Walls—Artificial Pond-water—Expression of Ova and Milt—A great Fact—Exportation of impregnated Ova—Artificial Spawning-trenches—Tending the Ponds—The Salmon-fry of artificial Ponds—Stocking with Salmon, Rivers that are devoid of them—Parting Aspirations

LIST OF PLATES.

Plate 1. - - - Frontispiece.
" 2. - - - to face page 88
" 3. - - - " 90
" 4. - - - " 92
" 5. - - - " 94
" 6. - - - " 220
" 7. - - - " 224
" 8. - - - " 226

The plate of Salmon-Hooks " 84
PURE FLY-FISHING FOR SALMON.

PART THE FIRST.

CHAPTER I.

IN LAUD OF FLY-FISHING FOR SALMON. — ON SALMON FLY-RODS, WINCHES, LINES, AND ON THEIR MAKE, MATERIAL, AND MANUFACTURE.

I have many times written about angling apologetically. I have frequently written in its defence, and very often in praise of it. I was chiefly induced to do so, because the art was defined as the occupation of a ninny by one great writer—Dr. Samuel Johnson; and as the amusement of a cruel disposition by another—the most popular of modern poets—Lord Byron. A host of imbecile babblers and ignorant witlings took up the cry, and ran, as they thought, this creature of their contempt to death. They should have recollected, and the doing so might have cooled
the scent, that one of the leaders of the pack was very purblind, and could not see a float or a fly upon the water, or a fish in it; and that the other, when he designated Izaak Walton a "quaint, old cruel coxcomb," was thinking of the minute and complacent manner in which the threading of a worm, or the impaling of a frog on the hook, is taught in "The Complete Angler, or Contemplative Man's Recreation." The poet made the amende honorable to Anglers, when the harmless-ness and charms of fly-fishing were explained to him, and the great common-sense moralist would have done the same, if he had read with genial attention the poem of one he justly denominated "a soft and civil companion." I allude to the poet Gay's "Rural Sports," in which will be found a pretty description of fly-fishing. Now, I shall have no apology to make in behalf of the branch of the angling art in these pages attempted to be taught, for in the practice of it nothing is tortured as a bait—neither worm, insect, nor any other living thing, the lowest or least sensitive in the scale of creation.

In praise of fly-fishing I shall have to write—I cannot refrain from doing so. Fly-fishing for salmon I have, recently, very acutely and abundantly enjoyed; so much so, that when my mind
reverts to it, forthwith most pleasant recollections crowd in upon me. I see before me, almost in palpable form, the Sutherlandshire salmon streams I, the past season, fished—I see the rocky cliffs, so monotonous in appearance when not diversified by the colours and shapes of creeping plants, through which stony obstructions water has, after centuries of toil, cut a way of irregular and diverse width, and tortuous direction—I see impending mountains, in parts bristling with more than one species of fir, or shining from the brightness of the agitated birch leaves; and in the spots of the mountain flanks, where I do not see these, I behold the pale violet colour of the bluebell, or the pink blossom of the far-famed heather—I see the spring of the silver-sided salmon, whether made in wantonness, or to clear some impediment to its journey towards the spawning shallows, higher up the river; or, more exciting still, I see the fierce fish, with semi-opened mouth, either rush like the bull-dog, or steal like the cat, after the angler's fly, as he draws it inwards towards him—I see the fly seized, and the fish turn downwards in the water, to skulk with it, so I fancy, to its subaqueous lair, and there devour it in solitary greediness—I see frightful disappointment caused to its gluttonous instinct.
no sooner does the angler feel his fly arrested in its progress by a smart snap and pull, than he lifts the point of his rod with a gentle jerk, and lo! the unsuspecting fish is hooked.

A stimulating struggle is the next thing I see—a struggle between the art of the fisherman, and the innate wily resources and strength of the fish—disappointed, surprised, and, may be, maddened into instantaneous and furious effort, if it have been stricken—if the *lethalis arundo*, the deadly barb, have been driven into cartilage or flesh too roughly. I can perceive, by the loud and rapid ticking of the winch, sounding like the whirr of an alarum clock, how quickly line is unwound by the harpooned fish in its flight; or I see it repudiate flight, and sullenly, after a drag or two, sink nearly to the bottom of the water, and there, working to and fro with head and tail, endeavour to reject the hook, or break from it; or I see the hooked fish, still more impatient, throw somerset after somerset high above the water, in order to break from the bit and bridle that hamper the freedom of its motions. I see the lusty fish break away from the hook and escape, or I see it rush circularly round a rock, and cut, by means of a sharp stony edge, or against a rougher one wear away to breaking, the gut-rein, which, under other
circumstances, would have held in the mightiest Samson of the salmon race. If these mishaps and miscarriages recur pleasantly to my recollection, how much more pleasantly to it must come memories of success—remembrance of piscatorial prowess performed under difficulties—the powerful fish conquered amidst rushing, roaring waterfalls, amidst rocks on land and rocks in water, where trees impede the hand and nearly impassable cliff-paths impede the foot—and the weapons of conquest a frail rod, of fairy, wand-like joints, a casting line, and hook, of despicable fineness and size! Great and suggestive of good is the wonder in which we gaze at the silver-sided salmon—its strength wasted and its struggles o'er—lying there upon that gravelly or rocky shore, seduced by a feather-and-fur semblance of an insect, a winged one, the fanciful creation of some angling artist's brain, and slain by implements, which, if the power of leverage had not been called into action, would have been shivered by the first adverse plunge of the salmon, as easily as the reeds of the jungle are smashed by the rush of the wild boar! The contemplation of these things is very pleasant; the far-off, retrospective, and prospective contemplation of them,—for what has happened before, we fondly hope.
may happen again. The performance of them is still more pleasant; they call forth strategy and strength—the one tone-restoring to the tissues of the brain, the other stimulating to the blood and invigorating to the muscles. Seek health—the greatest gift of heaven—where? Alongside the salmon-streams of England's isles—amidst the rural *toto penitus orbe divisos Britannos*, whether they be Saxon, Gaël, Celt, or ancient Briton. I could say more in laud of fly-fishing for salmon; but the immortal admonition of "painting the lily and gilding refined gold," warns me to eschew superfluous embellishment.

The Salmon-Fisher's Rod.—Before I proceed to teach how this angling apparatus must be used, I shall state what it should be in shape, size, material, and so forth. No salmon fly-rod need ever be longer than seventeen and a half feet, and should never be shorter than sixteen. With two well-made rods of the above lengths, the widest and narrowest salmon-rivers may be properly fished, and salmon and salmonidae of every size satisfactorily captured. I am fully aware of the advantages of very long and very powerful rods in wide rivers, and in strong hands; and I admit, *caeteris paribus*, that a strong man, six feet in height, with a rod twenty feet long,
and winch and line to match, will cover more water, and capture a greater number of salmon in less time, than a man of five feet six, with a seventeen or sixteen foot rod. In all other respects I suppose them equal; that the tall man is as expert an angler as the short one, that their flies and tackle are equally good, equally well made, and of equally good material. This equality being conceded, the only difference will be that which exists between the length, size, and strength of the men and their tackle. This difference is advantageous to the stronger man, particularly in large rivers, prolific of large fish.

I will detail some of the advantages. A long man with a long rod can throw a longer line than a short man with a short rod, admitting parity of skill. A long and powerful rod will carry a heavier line; and a heavy line, being as well made and of as good material as a lighter one, can be propelled to a greater distance. The upper joints of a short rod, especially the one that is technically called the "small-piece," will frequently break in the act of casting a long and heavy line — more frequently than during the act of playing a fish. With a long and powerful rod and line, the angler has much more power over a hooked fish, than if his tackle were shorter and slighter,
and consequently he will land his prey in a briefer space of time. If a horse will sooner yield to double bit and curb than to single, curbless snaffle, so will a salmon more readily feel the influence—the severer leverage—of the lengthy and strong rod. The consequence is inability—instinctively-felt inutility, if I may say so—on the part of quadruped or of fish, to struggle lastingly against palpably superior force. With a powerful rod one is more confident, and will boldly stop a fish when he sees it making for some dangerous part of the river; whereas, if he have a slight rod and the rest of his tackle to match, he will not dare to hazard the attempt, knowing that it will be sometimes useless and frequently dangerous to do so. Rapidity of execution is the chief attribute of a long and strong rod.

A man of the average height, weight, and strength of Englishmen (5 feet 8 inches, and 10½ stone), should never use a rod longer than 17 feet, or at the utmost 17½ feet. That is the average length I recommend for powerful rods. With it the largest salmon that ever swam can be safely played and securely captured. A winch that will carry one hundred or one hundred and twenty yards of stout line, will not destroy the
balance of such a rod. Twenty-five yards of line—perhaps, in the hands of a well-trained adept, thirty yards—may be thrown with it, without danger to its top-joint or small-pieces, and such a cast is sufficiently long for all useful intents and purposes, and the strongest salmon may be checked in its career—hook, gut, and winch-line, being of good material—by a rod not exceeding in length seventeen feet.

The sixteen foot rod is commonly called a grilse-rod, because it is better adapted for throwing a light line and small fly than a stouter rod, which a long one must be, if made in proper proportion. The rod that can successfully contend against the agile and enduring powers of grilse, will not eventually succumb to the brute, but yielding force, of large well-fed salmon. In wading, or fishing from a boat, a rod of sixteen feet is the most convenient and appropriate. No fish, not even a full-grown sea trout—I am speaking, of course, of the migratory salmon tribe—can be played into a helpless state of fatigue as quickly with a small rod as with a large one. Its pliancy yields to the struggles of the hooked fish, and consequently the fish's strength is not so rapidly exhausted, as when it meets with the stiff-necked resistance a large rod will present.
As there is more merit, so is there more amusement, in capturing salmon with a small rod and slight tackle, than with powerful rod and tackle. The one is fitter for rough, rapid work,—the other for gentler and pleasanter proceedings. With fishing gear almost irrefragable, the most awkward angler will kill large fish—to do so with delicate implements, demands the fine handling of a finished artist. If I were fishing for gain, the big rod should be the instrument I would use;—if for mere amusement—for trying pleasant conclusions with fish—a light rod and slight lines should be my play-things. If I were proceeding on a salmon-fishing tour throughout the empire, and limited to the use of a single rod, the one I would choose should not exceed sixteen feet in length; but, if I were not hampered in my choice, I should have one rod of that length, and another of seventeen feet four inches, leaving to the giants who delight in combating Spey and Shannon salmon, those piscatory poles, measuring six yards long and more. No angler should use a rod oppressive to his physical powers. The sword of the life-guardsman is longer and heavier than that of the hussar or light-dragoon; yet it does not follow, that in all encounters it shall do most execution. Still it
OF WHAT RODS SHOULD BE MADE. 11

suits best, like the heavy and long rod, the strong arm, and in that case is to be recommended.

From size of rod, I now come to material, make, and manufacture. The butt of a salmon-rod should be made of the best, long-seasoned ash, fine in the grain, and straight and lengthy in fibre. There should not be the slightest flaw, or smallest knot in it. The old shafts of gigs, and vehicles of that sort, and the handles of old man-of-war boarding pikes, make excellent butts, because they are well-seasoned, and have had their elasticity often tested and called into action. Butts made from them, if they are without flaw, will be lighter, more springy or more lively, than those made of ash, that has never been used or worked in open air and at all seasons. The only objection that can be made to ash for butts, is its general heaviness; but such objection cannot apply to it when it is of good quality and sufficiently seasoned. On the whole, I prefer it for butts to any other sort of wood. The best substitute for it in large rods, is red Norway deal; and in small rods, hickory. All the middle pieces of salmon-rods should be invariably made of hickory. When this wood is of superior quality and efficiently seasoned, it is almost as hard and springy as hammered steel. Besides, its grain is beautiful,
and it can be stained and polished to any colour or brilliancy—to that of old oak or rose-wood, to which elbow-oil for years has been assiduously applied. It is vastly preferable to lance-wood. The top-joints of salmon-rods should be of the finest bamboo cane, and I see no objection to a short piece of lance-wood at their thick ends. Every salmon-rod should have two small-pieces and three tops, one of which, for strong work, should be made of rent and glued bamboo cane. These spare small-pieces and top-joints are precautionary, but by no means uselessly so. They are remedies for breakage in those joints where it is most likely to occur.

The best materials will avail little, if the rod-maker be not a good one. First-rate fly-rod makers are scarce. Generally speaking, they understand outward finish, and perform it well. Balance is what they know least about, and no wonder, since very few of them, in London at least, are fly-fishers. If a rod fail in due and equalised balance from butt to tip, it will be cumbersome, fatiguing, and of unsatisfactory and irregular action. There will be more play in one joint than in another; elasticity, weight, and strength, or their opposites, will be irregularly distributed, and all the advantages of equi-
poise—heaviness, lightness, strength, weakness, springiness, partitioned with graduated evenness—will be lost. The fly-fisher should test the balance of the rod before it is brazed and finished, and if it have defective pieces, or if it be improperly tapered or graduated, he can point out the defects to the artisan. One joint of fresh wood, or one with a flaw or flaws in it, will destroy the equilibrium of the whole fabric. Rod-makers are desirous of information. Show them the remedies, and they will use them. There are, however, some journeymen, so indolent and careless of their employers' reputation, that, although they discover, in the working, some flaw in the wood, they will hide it, if they can, by varnish or other means, rather than recommence the joint on flawless material, and thus the vendor and the purchaser are victimised. Such men ought never to be employed on fine work; as masters, unable to rely upon them, cannot guarantee their workmanship to the angler. Journeymen in the employ of some master tackle-makers, put in, for "scamping"—slurring hastily over—their work, the plea of low wages, and justly, in many instances, I have reason to know. A cheap salmon fly-rod is the dearest thing one can buy. The price should vary from three to five guineas,
according to finish, length, and number of pieces. Spare and rent tops and small-pieces materially add to the value, and, of course, to the price of the rod. I am not partial to spliced joints; they are troublesome, unsafe, and do not make amends by any extra pliancy or lightness. I prefer joints that are single brazed, and to them I prefer double-brazed ones. The brazing of the shoulders and tongues of joints is now done to such perfection, that no material additional weight is superinduced, whilst the fitting into the ferrules is more exact, and, consequently, the shaking or loosening of joints is more effectually avoided. Single brazing is only fit for light rods, and if the wood be thoroughly seasoned, and the tongues accurately adjusted in the ferrules, I should have no objection to it. I am decidedly opposed to what are called "whippy" rods. The line may be rolled on to the water with them, but they fail in straight or round shoulder casts. They also carry heavy lines and large flies badly. Some people, when they try London rods in the shops, deem them too stiff; but this is a fault on the right side, if the material is good and accurately worked up, because a day or two of successful salmon-fishing will do away with the superfluous stiffness, and reduce the rod to appropriate
pliancy. Many rods, the joints of which appear too thick, possess more general elasticity than rods made of thinner pieces. This is caused by good material and good workmanship, the latter producing the desirable balance I have already described. Very stiff rods are never required, except in rivers overhung by trees, when the hip, or under-handed cast, is necessary.

Winches are made perfectly in London. I have a great dislike to deep and narrow ones. They either diminish the true balance of the rod, or impede the comfortable action of the hands and arms in casting. They possess no intrinsic merit, not even the alleged advantage of taking in, or up line, with greater rapidity and regularity—without danger of one coil hitching in, or being caught, by the other, and so becoming entangled. The depth and width of a winch should be equal, or, if there be any difference made, the width may be less than the depth by half an inch, in reels that can carry from eighty to one hundred yards of line. Multipliers are properly repudiated by practical fishermen. The well-finished check-winches is the best of all. It must not be too free in its action, but just stiff enough to keep the line taut when the fish darts away with it, nor should it give out line when a fish
is struck, or rather in the striking of a fish; nor be so loose in play as to let out line when the fly is worked against the current, or lifted from the water for the repetition of a cast. I would rather have its action a little harsh at first, because I know that every salmon that runs out its line bravely, will add, infinitessimally no doubt, to its freedom of play. The scoop and cross-bar should be of one solid piece, and should be riveted to the plates by, at least, three strong rivets on each side. Winch fittings cannot be too strong. The shoulder of the handle of a winch should lie close to the plate, or be guarded by a raised rim running round the edge of the plate on the handle side. This will prevent the line from catching between the handle and the plate, and it will also prevent the handle from being bent or broken by a fall, or any other accidental collision. For the future, I shall have my winches bronzed, and the knobs of the handles, instead of being made of brittle bone or ivory, shall be made of horn, or some other substance hardy enough to withstand a good thump against a rock's side.

Salmon-Lines. — Winch salmon-lines should never be twisted. Twisted lines never uncoil perfectly straight. They invariably kink in a more or less degree, and attrition against the rod-
rings causes them to fray. A line that frays never runs freely through the rings, either in casting, or in playing a fish. Many a hooked fish is lost by the sudden hitching of a frayed line in one of the top rings, and many a rod is broken by a similar incident. Winch- or reel-lines should be always platted, because they have a greater tendency to lie at length than in coils, and they are not liable to fray. The materials of which they are made can, in the manufacture, be compressed into a slighter volume, so that a thin platted line shall be stronger than a thick twisted one. Platted lines should be made of silk and hair; the silk predominating, and being of good quality. The reason that many of the platted lines now made are too light is, that the silk used in the fabrication of them, is the worst quality of Chinese silk. If substantial, raw Italian, or Persian silk were used, lines would not only be stronger but heavier, and thin ones would suffice to carry out heavy casting-lines and flies. I have seen platted lines made of silk and fine gut, and I am of opinion that if they were made with care, and of materials carefully selected, they would be the best of all winch-lines. They could be thrown farther, would be less liable to kink, and would be more enduring than any other
species of line. Eighty yards of such a line, of the thickness of breeding-cage wire, would be sufficient to cope with the stoutest Tweed or Shannon salmon. I do not approve of lines that taper sharply. They are only fit to carry out fine casting-lines and small flies, and can never be thrown well with a large rod, or against an opposing wind. I am opposed to very thick lines. They may be useful in making the under-handed cast, but for the fair, free cast from the shoulder, they are unnecessary. They are, generally speaking, a cumbersome nuisance, requiring a large, unwieldy winch, and they imbibe too much water for light and graceful casting. No platted salmon-line need be thicker than the barrel of a partridge wing-feather.

I am greatly in favour of single gut casting-lines, and twisted treble gut ones I would not use except for spring-fishing. A model line should consist of three or four links of single gut at the extreme or fly-end, then a couple of double gut links, and, lastly, as many of treble gut, to meet the winch-line, and be looped on to it. The last treble gut-link should tally in thickness with the end of the reel-line to which it is joined. Provided the gut be fresh and good, I do not see the probability of any fish, under ordinary circumstances, snapping asunder a line made as just
stated. Treble gut lines are for the most part twisted. I should prefer them platted, for the same reasons that I prefer platted winch-lines to twisted ones. On the goodness of the gut depends the goodness of the line. If each link and knot be not honestly tested by the maker, the chances are, the line will be an unsafe one. Too much stress is laid on the importance of very thick and round gut. If fresh, transparent, and flawless, of course it is the best; but I have seen flat gut and thin gut stronger than thicker and rounder links. I prefer quality to rotundity or stoutness — tackle of fine and compact material, to that which is massive and porous. I have had slender grilse-lines with which I should not fear to lead the "wickedest" salmon within reach of the gaff or landing-net. Gut that has been long exposed in shop windows should never be purchased, and links that have light rusty-coloured spots on them should be rejected. In making a casting-line, the finest links should be those next the fly, and the thickest next the rod.

Both winch- and casting-lines soon rot if wound or coiled up in a wet state. At the termination of a day's fishing, all the wetted portions of lines should be uncoiled, and exposed to desiccating, atmospheric, or other action.
CHAPTER II.

ON THROWING THE LINE.—THE VARIOUS MODES OF DOING SO DESCRIBED AND EXPLAINED.

I confess I find very great difficulty in showing by writing how a line should be best cast in fly-fishing for salmon. By the river side, with rod in hand, the thing could be easily taught. I should fear failure in the attempt I am now about to make, did I not take it for granted that the majority of my readers are already more or less practically versed in fly-fishing for trout. I beg it to be borne in mind that I am not now writing for the instruction of mere piscatorial tyros; that I am not composing a book solely for fishing freshmen, but rather for the finishing study of halieutic graduates. Encouraged by the conviction that the fly-fisher for trout will understand me, though, perhaps, I shall write too minutely to be very clear, I shall proceed to lay down new rules for throwing the salmon-line, and then have recourse to what I have written before, and what a few others, whom I consider citable authorities, have before and since written on the subject.
The salmon-rod is to be held with both hands, one above, and the other below the winch. In throwing from the right side, the right hand is to grasp the rod above the winch, the left below it. In casting from the left shoulder, the left hand is to be first and the right last; that is, it must clutch the rod between the winch and the extreme butt-end of the rod. In fishing down a river on its right side, the left-shoulder cast is to be used; in fishing from the left bank, the right-shoulder throw is the proper one. Stand at the head of a stream, looking down it as it runs from you, the bank on your right side is the right-hand bank; that on the left, the left-hand shore. In ascending a river, the left-hand bank is on your right side, and the right-hand bank on your left. This explanation may be deemed superfluous, but I fancy it will enable me hereinafter to be more perspicuous than if I had not given it.

I'll suppose the salmon-fisher coming down the right side of a river, and that above him, to his right, are cliffs or trees,—how can he bring back to that side over his right shoulder, rod and line, without causing them to come into collision with the impediments behind him on his right? He can do so in two ways — the first in greater part wrong, the other perfectly right. The first and imperfect
way, I call the back-handed cast. It is performed thus:—the point of the rod held nearly perpen-
dicularly up before you—the forward and up-
ward slanting direction being very slight indeed—
the point of the rod is swept to the left, and with it
the line, to its entire development; then the hands,
—no, not both, but the right one,—wrist, and
fore-arm, are turned over, backwards, to the right,
and the rod brought round in the same direction;
the line is turned over circularly, and propelled
down or obliquely across the current. I fre-
quently throw in this way, for the purpose merely
of easing the arms, fatigued from the monotonous
action of throwing over-hand from the right or
left shoulder. It will be seen that the effect of
this throw will be to carry the line clear from the
bank behind, up and over the river, and then to
bring it back over the current's course, and cause
it to alight down stream to the right. Notwith-
standing, the action of the arms must be cramped,
for it is reversed in the over-handed throw, and
the cast must be very limited in extent. Be-
sides, when fishing from the right bank of a
river, the fly can never be so neatly worked
against the water with the right hand holding
the rod above the winch, as when the left hand
holds it there. The second method of casting
from the right bank, and which is the proper one, I will now explain.

You hold your rod, the left hand being above the winch, and the right one beneath it; left leg foremost, and left side towards the river. You bring your rod round, by, over, and beyond the point of your left shoulder, which motion will carry the line to its full extent upwards over the bed of the river, and feeling that the line is so extended, you bring back a little, in the direction you are going to cast, the point of the rod, and making use chiefly of the action of the left arm, you propel the line forward by a motion you give the rod, as if you were going to strike at something hovering in the air before you. The forward motion of the rod will be checked at a short distance, unless you bend forward with it, and the line will be sent straight out, the fly and gut-line, to which it is attached, coming first in contact with the water. Giving the arms and bending the body too much with the rod, in making the cast, is a very bad habit, as it brings the point of the rod too close to the surface of the water, deadens its elastic and propelling action, and causes the line to fall in a loose and slovenly manner on the water. This left-shoulder cast is only absolutely necessary when you are fishing from
beneath the right bank of a river, and have behind you impediments to a right-hand sweep of your rod and line. If the right bank be flat or shelving—if it be clear of obstructions—I can see no material objection to right-shoulder casting from off it.

The straight right-shoulder cast is done thus: the right hand holds the rod above the winch, the left below it; the right side is next the river, and, of course, the right foot is foremost. You bring your rod and line boldly and freely in a fine, easy, wide, semicircular sweep over your right shoulder, and then you send them forwards by communicating to the right fore-arm sharp action, as if you were going to hit something elevated before you with the soft part of your closed hand, on the little finger side. If all this compound action—bringing back the rod and line over the right shoulder, and then sharply sending them forward—be performed dashingly and energetically, without nervousness, stint of sweep, and strength, your fly will be sent straight away to its destination, similarly to, but not so swiftly as, an arrow shot from above at an object sitting beneath you on the water, at a distance of five-and-twenty or thirty yards. The straight casts, whether from the left or right shoulder, are, generally speaking, the best. At any rate, executed
by a proficient, they are always the neatest, and should by beginners be the first learnt, and then practised unto perfection. They can be performed with great accuracy, so as to enable the angler to determine, almost to an inch, the precise spot on which his fly is to fall. They cause the fly and casting-line to touch the water first, and enable you to commence working the fly, or showing it to the fish, sooner than you could do if much of the winch-line came in contact with the water simultaneously with the casting-line. The effect of the straight cast is less disturbance to the water than that of any other species of cast; the only defect that can be attached to it is, that, perhaps, you cannot by its means throw so far as by using the side, or rolling cast, of which I shall speedily speak.

Throwing the line well being of such importance in fly-fishing for salmon, I will quote from "A Handbook of Angling" what I wrote on the subject two years ago, making use at that time, as I shall now, of the observations of others:—

"'Casting the fly is a knack,'" says Mr. Scrope ("Days and Nights of Salmon-Fishing"), "'and cannot well be taught but by experience. The spring of the rod should do the chief work, and not the labour of your arm. To effect this, you
should lay the stress as near the hand as possible, and make the wood undulate from that point, which is done by keeping your elbow in advance, and doing something with your wrist, which is not very easy to explain. Thus the exertion should be chiefly from the elbows and wrists, and not from the shoulders. You should throw clear beyond the spot where the salmon lie, so that they may not see the fly light upon the water; then you should bring the said fly round the stream, describing the segment of a circle, taking one step in advance at every throw. In this manner the fish see your fly only, and not the line. It is customary to give short jerks with the fly as you bring it round, something in the manner of minnow-spinning, but in a more gentle and easy way, and I think this manner is the most seducing you can adopt; it sets the wings in a state of alternate expansion and contraction, that is extremely captivating.'

"I think I can make Mr. Scrope's directions touching casting the salmon-fly somewhat more easily understood. Hold your salmon-rod by grasping it with the right hand above the winch; with the left, beneath it. Grasp it firmly, and poise it backwards by the strength of your fore-arms, as you would a long-handled light axe, with
which you were meditating a smart blow on an object placed above and opposite to you. Lift your rod perpendicularly, and bring its point semicircularly round over your right shoulder, the fly and line sweeping round at the same time, but in a far larger semicircle. When, in bringing your rod and line round, your right hand has also come round over the right shoulder, and almost into contact with the right side of the head, propel your rod and line forwards with a strong, sharp fling, whose action is commenced by the hands and wrists, and terminated and completed by the muscular power from elbow-joints to finger-tips being called into forcible play. In making very free and long casts, recourse must be had to the propelling force of the upper as well as of the fore-arms; in fact, in these long casts you must throw clean from the shoulder. In throwing from the left bank, between trees, &c., do not elevate the rod over either shoulder; hold it out before you in a slightly elevated, horizontal position, and, bringing it back sharply to the right, turn it over towards the left, and you will be able to ‘chuck’ your line and pitch your fly downwards with the current. This is one of the ways I would recommend in fishing the left bank of a river, from which trees and rocks present
impediments to the straight, right-shoulder cast. By moving your rod before you several times from right to left, to get your line and fly into easy balancing swing, you can cast sideways backwardly from left to right, and so fish the obstructed part of a stream lying to the right of you. It would be better, however, to place the left hand above the winch and throw under-handed, performing what is called 'the hip cast.'"

I wrote, in "A Handbook of Angling," a passage which I now retract, as containing too stringent an admonition. It is this:—"Your fly and gut-line must always fall first upon the water, and not roll on to it by means of the winch-line first coming into contact with the liquid surface. The rolling descent of the line and fly should be avoided *totis viribus*, with mortal might and main." This is too strong. The winch-line may be rolled on to the water with advantage frequently. Sometimes you cannot cast without doing so, as, for instance, when you are fishing close below a bridge, or any other obstructing object, high rock projecting into the water, or tree on either side above you. You must then chuck or skew your line on to the water, which a portion of the winch-line will touch first, sending straight before it casting-line and fly. Although not a graceful
mode of casting, it has utility in its favour, and as salmon are not so easily scared as trout by a line's plash on the water, no harm can result from it. Recourse must be had to it, therefore, at all times when impediments would hinder the development of the line sent semicircularly backwards from the right hand or the left.

Let us now see how Mr. Stoddart teaches casting with the salmon-rod. That gentleman says:—"In fly-fishing for salmon, the casting of the line is generally managed, first of all, by raising the rod back over the left shoulder. This part of the operation requires to be done slowly and deliberately, with a slight increase of speed or force on the part of the performer as he proceeds. He will then, if managing properly, raise the slipping or employed portion of the line above and behind him, so that, by further elevating the rod and bringing it round over his head, both hands being employed in the exertion, he shall cause the tackle in question to describe, as it were, a sort of semicircle in the air. He must then, at the moment the sweep in question is completed, and the rod has attained its highest elevation, direct his fly forward by a rapid impulse towards the spot where he wishes it to alight; and this should be done without any ac-
companying jerk or violent movement, but solely by a firm continued exertion of strength, as in the ‘putting’ or launching of a large stone or cannon-ball. This is the left-shoulder method of throwing the salmon-line; and is commendable, not so much on account of its being more easily managed than the other, but chiefly because of the advantage it gives the angler when under a bank, or in advance of shrubby ground, when his hook, were it suffered to fly back instead of being kept aloof over his head, would frequently find its anchorage behind, and thus endanger the safety of rod and tackle, as well as try the patience of the thrower. But there is no reason why, under favourable circumstances, right-shoulder casting should not be resorted to. I think, for my own part, that the fly hove from the right shoulder generally alights on the stream’s surface with greater lightness, and may be directed with more accuracy towards the desired spot.” The trout fly-fisher, with very few exceptions, when he first begins to handle the salmon-rod, will find the right-shoulder cast the most easily accomplished. Unless a man be what is called left-handed, his right hand is the fittest for taking the lead in all brachial exertions. It has natural advantages, which would remain exclusive ones in many in-
stances, did not practice and exercise with the left hand and arm counteract the monopoly. In salmon-fishing, the powers of neither arm should be constantly and exclusively called into operation. They should be brought into play alternately, so that in changing hands no awkwardness or inconvenience may ensue. Alternately exercising each hand and arm, will render the salmon-fisher ambidexter—a most advantageous consummation.

In order that the reader may not lack any information on the various modes of throwing the salmon-line, I shall quote passages from two of the most recent writers on the subject. Mr. J. Colquhoun, in his new work*, says:—"Some anglers have an additional piece to screw on their rods for long casts; a very thin butt is required when this piece is not added, and it is more apt to twist the rod. If equal in other respects, a man who has the power of throwing a very long line has the same advantage over a less gifted friend, in this particular, that a far-killing gun has over an inferior one, both in the same skilful hands. I should therefore advise every aspirant to excellence in salmon-fishing, to attain this

* "Rocks and Rivers, &c." published last season, by Mr. Murray, Albemarle Street, London.
knack (the throwing of the line) in the greatest possible perfection. Some anglers who throw the longest line make it "swirl" out upon the water, the hook appearing to alight last. Others cause the fly to hover for a moment, and touch the water before any part of the line. These last appear the neater fishers, but the others command more water. In fishing a salmon-cast, throw a point down stream, bringing your hook gradually round by short jerks, but always keep it two points against the stream, and never bring it in so straight towards you as in trout-fishing.* In dead water, when a very long cast, you may throw straight out, bringing your fly round, by keeping the point of the rod up, instead of down stream. There is an under-handed throw much in use on the Spey, which prevents the line from circling behind. Of course this is a great advantage among trees or other obstacles. It is generally practised up stream†, and the line with its 'swish' upon the water goes over all the fish

* The advice embodied in this and the following sentence is not orthodox. By and by I shall show how the salmon-fly is to be properly worked in the water.

† If so, it is a very bad practice. All casts should be down stream, and the working of the fly must be up stream, or against it.
before they see the fly, which appears to me a great objection. These Spey fishers can throw this under-handed cast as far as an expert hand in the ordinary way. A peculiar rod is necessary, which must be very stiff. Indeed, a common salmon-rod would be apt to break in the hands of these fishers. The cast is easily learned, but must be seen to be thoroughly understood."

The second* of the two authorities I have just referred to, writes:—"We" (I fancy the author means salmon-anglers of Wales, the Wye, and rivers contiguous,) "have a mode of sending out the fly in quest of salmon, known, I believe, by the name of the 'Welsh throw.' The fly is brought as near you as the length of line will admit, by drawing the rod, almost perpendicularly or inclining a trifle, behind you, either on the right hand or the left, immediately delivering the line before, while the fly and several yards of line remain on the water. The line in this case sweeps along the water, and the fly reaches the surface last. To accomplish this throw the rod must be well proportioned to the line. If the rod be powerful, so must be the line. If the rod be lighter, the line must be proportionably so, else to succeed is

impossible; and without a line made for the express purpose, no man can accomplish the throw. The line must increase in thickness from the point for about twenty-five yards; nearly the last half of these twenty-five yards being very heavy. The object of this is, that the weight of the upper part shall be such as to force forward the lighter end, with the gut and fly. The greatest weight of line being at the point of the rod, sends out the lighter part with much less exertion to the angler than is required for the usual over-handed throw. And it possesses another material advantage: that you can fish those catches or casts from the bank, which you could not command, unless in a boat; for, as the line is never brought behind you, no rock, tree, or bank impedes the throw. The fly, too, can be pitched very much farther by this than by any other means. The economy of manual exertion, the being enabled to fish in any cramped place, and the sending out a greater length of line, surely form a triad well worthy the salmon-fisher's notice.”

I think one sentence in the above passage — on the whole a very useful one — somewhat obscure, and therefore requiring elucidation. The sentence I mean is this: — “The fly is brought as near you as the length of line will admit [that is,
in my interpretation, drawn in the water towards your feet as closely as the length of line out from the top of the rod will allow—you could draw it quite close if the length of the line out did not exceed the length of the rod], by drawing the rod, almost perpendicularly or inclining a trifle, behind you, either on the right hand or the left, immediately delivering the line before you, while the fly and several yards of line remain on the water. The line in this case sweeps along the water, and the fly reaches the surface last.” The words in italics contain chiefly the obscurity I complain of. To my comprehension the author means that whilst the fly and some of the line are not as yet lifted from the water, the rod is moved back and then propelled sharply forwards. Now, by this double motion, the fly and line must be lifted from the water and brought in an upward direction towards you, but not behind you, else you could not force them forwards. When they are sharply driven forwards, the winch-line touches the water first, and the instant it touches it, the casting-line is shot on straight before it. This cast is the straightest from the shoulder of all; but unless it can be made in an oblique direction down stream, it is far more useful to the trout-fisher than to the salmon-angler, for this
reason, that the trout-fisher, having thrown across the water fairly opposite to him, can work his flies down with the current, whilst the salmon-fly cannot be so worked. If the attempt were made, the salmon-fly would either roll over as it went with the current, or it would float down irregularly on its side. At any rate, its feathers and fibres would be sometimes all of a heap, and sometimes spreading and sprawling in the water, terrifying rather than attracting fish.

The cast I have been just commenting on is practised, but somewhat differently, by London fly-fishers for trout. They do not—I mean those who have learnt the style recently in fashion on the metropolitan counties' rivers—bring the rod and line round over either shoulder, but straight backwards over the right clavicle, and balancing them over it by two or three bold movements of the rod and line backwards and forwards, they finally fling straight before them vigorously; and, though the winch-line touches the water first, the casting-line is driven forwards to a very considerable distance. I do not think this method should be contemned. By its means, fish rising far from one, can be reached; but it labours under a disadvantage, viz., that it cannot be well practised unless from the right shoulder, and that
obstructions in the rear of the angler are fatal to it.

Next to the casts already described, from either shoulder, right or left, by bringing the rod and line semicircularly round the point of the shoulder, and when the line has fully developed its length rearwards propelling it forwards, so that the casting-line shall fall first on the surface of the water, I like best under-handed casts from left or right side. In performing these, the rod is held forwards horizontally, with the hands and arms projecting in a line with the termination of the ribs. If the right hand is first, the rod is brought in a horizontal sweep to that side, and then urged sharply in an opposite direction, by which means the fly and line are pitched far to the left side, the latter touching the water first, the former alighting on it last. Pitching the rod, line, and fly in this way, is done by a motion not unlike the way a cricket-ball is pitched by a round, over-handed throw, or not very unlike the way a stone is "skewed" on the surface of the water to make what boys call "ducks and drakes." The winch-line falling first on the water makes the duck, and the casting-line and fly falling farther off make the drake. In casting under-handed, with the left hand grasping the rod above the winch, the rod
and line are brought backwards horizontally to the left side, and then propelled down stream to the right. I strongly recommend the practice of casting under-hand. It is the best substitute for over-hand, or any sort of casting from the shoulder; and an adept at it will be rarely nonplussed by natural or artificial obstructions obtruding themselves in any way or on any side. A short or a long line can be well thrown by these side-casts, and it is not always necessary to develope fully, in a backward direction, the line in making them. The line need only be brought partly back, and then turned over by a turn of the rod; and simultaneously with the turn, shot forwards over, and on to, the water.

I am afraid I have been tediously minute in this chapter. Should I be considered so, my defensive plea must be "the love I bear for salmon-fishing is in fault." That love renders the faintest features of the art interesting in my eyes, and so I could not refrain from elaborating them usque ad unquam.
CHAPTER III.

ON WORKING THE SALMON-FLY THROUGH THE WATER, AND ON HOOKING AND PLAYING SALMON.—HOW SALMON-RIVERS ARE TO BE FISHED.

The composition of this chapter will afford me pleasure. I commence it cheerily because its subjects are pleasant ones. I have studied and practised them carefully, in right mood, I fancy, of mind, and with correct performance of hand. They are of immense importance. A man may be able to throw a line into a nut-shell floating on the water at a distance of thirty yards from him, but if he do not know how to humour his fly and hook his fish, his casting skill will be merely a parade acquirement, very seldom leading to conflict or victory. Tact in working the salmon-fly, and in striking and hooking a fish, is more valuable than any other species of angling tact, and happily there is no great difficulty in the way of its complete acquisition. If I possess any piscatorial tact, it is that in praise of which I have just spoken.

The error of the majority of salmon-fishers lies
in their working the fly through the water with too much force and rapidity. I am told, and I have reason to believe it from some personal observation, that the error is more frequently committed by Irish salmon-fishers than by Scotch. The latter, however, perpetrate it commonly enough to be adjudged sinners requiring earnest admonition. I advise gentle working of the fly through and against the water, with no more action than is required to display before the eyes of the fish the artificial bait attractively; with no more speedy power than can be easily compassed by a pursuing fish.

The salmon-fly is always to be worked or humoured against the current, never with it; to be worked up and down beneath the water's surface, head foremost and onwards towards the angler, or rather in the direction of the point of the rod. This is done by moving your hands and arms up and down, somewhat in the way you would work a light and free pump-handle. The up-and-down motion of your hands will communicate a similar motion to your rod, line, and fly, — similar in appearance, but not in degree. The casting-line and fly will be less influenced by the action of the hands and arms than the rod; and the winch-line—at least the portion of it in the
water—will feel the action less than the rod, but somewhat more than the casting-line and fly. In performing this up-and-down action, the line must be drawn in a little by directing the upward motion of the rod a little towards yourself.

I will explain the effect of this action, when properly performed. It is an upright zig-zag one, with oblique tendency towards the angler. The rod and line, when lifted up and down, will cut out empty spaces not unlike those between the teeth of a saw. When the rod and line are lifted up, so will be the fly, and the resistance it meets from the superincumbent water against which, in an upward direction, it is forced, will press down its wings on the body, compressing, of course, the fibres of the feathery or fur material of which wings, body, and legs, are made. When by the next motion, a sinking one, of the rod and line, the fly goes downwards against the water, the resistance it meets with from beneath opens all the fibres of the wing-feathers and of the hackles, displays the colours of each, discloses the body and the tinsel with which it is ribbed. When by the motion that occurs between the two others, the fly is drawn towards the angler, the water presses it from above and below—indeed on all sides—and all the materials of which it is made
are more compressed than they are by any other motion. The motion I have called the sinking one, is the most attractive of the three, because its effect is fuller development of the colours of the fly, and fuller action—I may almost say separate action—to each of the fly's component parts.

Now, if the up-and-down and drawing-in motions are performed roughly and rapidly, the effect, or rather one of the effects will be, constant compression of the fibres of the wing and hackle feathers, and of the hairs, be they of mohair, or pig's wool, or fur, of which the body is made. By this compression shades of colour are hidden, and nearly all the beauties of the most seductively mixed wing are obscured. The full wing and the full body are attenuated injuriously by water-pressure. Certainly, no matter how rapid the upward and downward motion of the fly may be, its fibres must open as they descend against the water; but their colours are displayed for so brief a period, that the fish has not had sufficient time to distinguish them. The rapid motion between the heaving and setting of the fly draws it so swiftly towards you, that few fish are fleet enough to overtake it, and if they are, they will be, I fancy, disinclined to make use of extraordinary effort to do so.
In order to convince myself completely of the demerits of the rapid working of the salmon-fly through the water, I used to frequently request, during an experimental excursion made last season, an excellent angling guide I had with me to take my rod, throw the fly downwards obliquely across the stream, bring it round rapidly into the current, and work it rapidly against it. Whilst this was going on, I was placed in such a position as to observe thoroughly the effect of the rapid working of the rod and line on the appearance of the fly in the water, and on its progress through it: I could see the substance of the fly compressed to disproportionate tenuity, and I could see it cleave the current by "spurts," so long and rapid as to be inconsistent with the ordinary progressive powers of natation or of flight. I have seen a salmon follow a fly worked thus rapidly into the current and up it, and I have seen the fish, unable to overtake the bait, give up the pursuit and drop back again to the spot from which it had risen. I would then request my angling assistant to rest for five or six minutes, and to throw as before, but to work the fly gently. I have seen the same salmon rise again, follow the fly with moderate haste and opened mouth, and as the bait descended, and as it was moving away with collapsing, not
collapsed, fibres, seize it securely within the jaws, and then turn off downwards with the intention evidently of swallowing it at leisure after having dived into its subaqueous lodging. This experiment I have caused others to perform, and I have performed it myself over and over again, and with results sufficiently invariable to make me condemn the rapid working of the fly through the water, and approve of moderately gentle working.

The following pretty manœuvre I have seen performed, and did it myself before I ever saw it done. I have seen a fish rise at something on the water, most probably a small insect, or some minute particle of some sort of food, or of something having the appearance of food, and I have seen the angler throw his fly beyond the fish, and then work it over him and before his eyes to the best of the angler’s calculation. I have seen the fish sluggishly follow the fly, as if making “I dare not wait upon I would,” and I have seen the angler, observing the motion of the fish as I did, stop the onward progress of the fly by lowering a little the point of the rod, and all the fibres of the fly being opened, and its progress onwards being arrested, and a very slight motion downwards towards the hesitating salmon having been given, by a momentary short relaxing of the line,
to the fly, I have seen the salmon seize the latter with a snap as sharp as that of my lady's Blenheim, disturbed from its fire-rug siesta by the buzzing beneath its nose of some reckless house-fly. When working the fly, my guide, perched above me on a rock, has given me notice of a fish following the fly, and trying to seize it. I would then gently lower the point of the rod, or give a little line off the winch with my hand, and I very often had the satisfaction of feeling a tug under water that induced me to make a successful little pull in an opposite direction.

There is nothing like observation. Let the learner place himself on an elevated spot, and overlook the actions of a brother salmon-fisher. He will see how the cast is performed; he will see the fly alight on the water, and sink a little into it; he will then see it worked through the water, he will see the exact form it assumes whilst being so worked, and the rate of speed communicated to it. He will see that if it be worked rapidly, its wings and fibres will be nearly always in a state of collapse, and will wonder at the contraction of its size, and he will be amazed at the darting rapidity of its onward progress. If he understand reasoning by induction, he will conclude at once that sharp working of the fly is wrong—unnat-
tural, if I dare apply fully the meaning of that epithet to fly-fishing for salmon. If the brother angler work the fly gently, the observer will see that the fibres are alternately compressed and expanded—that its flits through the water are short and of moderate speed—that it rests and moves on by stops and starts, after the fashion of several living water insects—that it looks more life-like—that its colours and shape are more fully developed—that you yourself would be deceived by it did you not know the why and the wherefore of its coming and going—and, finally, you will conclude that so worked, and humoured, and manoeuvred in the water, it is rendered so much the creature of art—of *ars celare artem*—as not to make it at all a matter of wonderment that the perception of fish should be led into fatal error by the imposture.

I have noticed, amongst salmon-fishers, a pretty general fault: they see a fish rise at a good distance; they throw over him, and the instant the fly touches the water they lift the rod, and begin working the fly. By this instantaneous lifting of the rod the fly is rapidly drawn towards you, and a yard or more of your long cast has been rendered useless, and very probably the fly has escaped the vision of the fish, and, at the time you
begin working, it is too far away to be followed, even if seen. In making a long cast beyond and over a salmon, just as your fly is alighting on the water, lower a little the point of your rod, and give two or three feet of line, if there be room, beyond the fish, and your fly will be carried further by that distance than if you lifted the rod and tightened the line as the fly was coming into descending contact with the water. Commence working the fly gently; and, if you have calculated rightly the position of the fish, you cannot fail to introduce the fly to his notice favourably. At any rate, by following what I have just here recommended, you will be able to command a greater extent of water, than by lifting the rod simultaneously with the completion of the cast.

Hooking a Salmon.—Striking at and hooking a fish are nearly synonymous. To strike and hook a fish requires self-possession, and very little more; that little is, not to attempt it too quickly and too rudely. If you are fluttered at the rise of a fish, you will either strike too soon or too strongly, or not at all, like a fowler startled at the noise made by a pheasant, flushed from a hedge-row. My general rule is not to strike at a salmon until I feel him—until I feel "a bite"—if I may be allowed to apply to the royal sport
of salmon-fishing that ignoble word. When I feel the slight "tug,"—aye, that's the right word,—I allow a second or so to elapse; and then, lifting the point of my rod, I make a short, smart, jerking motion backwards with the wrists, and I generally find that I have hooked my aquatic quarry. Every man almost, at the beginning of the season, is nervous; and I will ask the oldest salmon-fisher if he do not then lose many a fish by his precipitation in striking? He becomes steady in a day or two, his eye and hand become ready, and he manages the latter with veteran coolness and delicacy. The general rule for striking laid down by others is as follows: salmon do not jump at a fly like trout, but rise up at it and take it under water; in doing so, they cause a break in the surface; and, having taken the fly, they turn round to descend to the bottom with it, and this motion causes the break on the water's surface to contract. The moment the contraction takes place is the time for striking, for then the fish is supposed to have the fly fairly withinside its lips. I have no objection to this rule, except that it is not easy for the beginner to observe and practise it: as for myself, I confess that I frequently strike at and hook fish without, as far as I can conceive, any premedita-
tion or calculation, but almost by instinct. Something, I cannot say what, tells me that a fish is "at" me, and, consequently, I am promptly at him in the sly way he has come at me.

Let us inquire, why I recommend gentle and somewhat slow striking. I am of opinion, that in the majority of rises a salmon half hooks itself. Consider what a very sharp thing the point of a good hook is, and how easily it is inserted into moderately soft substances by very slight resistance. Now, consider the weight of a descending salmon with this sharply-pointed thing in its mouth, and consider, also, the resistance offered by a taut line, which the salmon's descent is tightening more and more, and you will not deem it at all surprising that the fish should half hook itself. If you concede me so much, you will then concede that nothing more than a gentle stroke, or short, sharpish pull on my part is necessary to insert in some part of the fish's mouth the hook beyond the barb. Again, another reason why I favour gentle striking. If I miss my fish, it is done with such gentleness that it causes no serious alarm, and you may, therefore, reasonably hope for a second rise. A third reason for gentle striking is, that by making use of it you give the fish full and fair time to close its mouth on the
fly, and you are not, consequently, liable to snatch it from jaws half open. A fourth reason: a fish gently struck and hooked scarcely feels the operation, and is less inclined to dart off in the water or out of it instantly, and give you furious battle with unimpaired vigour. On this point I find, in my "Handbook of Angling," the following words:—"The critical fish-stroke is made by a quick, but very gentle, wrist-motion, by which the hand is canted upwards, being displaced about two inches only. Such a stroke made instantly the fish actually reaches the fly, at the moment he has closed his mouth on it, and before he has time to throw it out again, is sure to secure the entrance of the hook within the substance of the mouth, without causing great alarm to the fish by any unnecessary violence; for it cannot have escaped the observant angler that, when a fish has been harshly tugged in striking, he commences at once a more determined resistance than when the stroke has been less violent, and his alarm less sudden. Neither can we wonder that his efforts should be extreme, when he is made sensible of his situation by a stab and a drag which have half pulled him out of the water." Though this was written respecting trout, it is perfectly applicable to salmon-fishing. Mr. Scrope, an ex-
Excellent and experienced salmon-angler, writing on this subject, says: "It is best to strike a little sideways, that the hook may fasten in the fleshy part of the mouth; whereas, if you pull straight up, you are apt to encounter the upper or bony part; or, if the fish has not closed his jaws, and fairly turned off, you may pull the fly from him too soon, to the disappointment of both parties. Sometimes, however, when a salmon is clean run, and in high glee, you can scarcely miss him, strike which way you will. In low water you must be somewhat dilatory in striking; you often see the heave of the water and a break before the fish has actually seized your fly. Give him time to turn his head in his way back to his seat, to which a salmon returns after rising at the fly."

Having spoken in praise of gentle striking, I shall now speak in dispraise of striking rapidly and rudely. This is teaching by contrast, a favourite method of instruction with me. This very year (1849) I have witnessed several fish missed by quick striking, and, in one instance, saw a gut casting-line—which, if used fairly, would have killed a hundred fish—lost, by the bad method I am censuring. Some of the parties fishing being of elevated rank or strangers, I durst not offer corrective advice to them. To one party I
could, and he took it, but not before I convinced him by proof. The party I allude to was an adolescent, who accompanied me as a guide and angling assistant. He had the eye of a hawk, and, whilst I fished, he invariably watched the fly — the river was not wide — and when he was a little elevated above me, he could see the rising fish, and what it did, far better than I could do. The moment he saw a salmon or grilse take the fly, he would say, "She (he was a young Highlander) has it, sir; strike her." I would answer, "All right—wait a bit;" and, to his astonishment, I would wait a couple of seconds after those words were uttered, before I struck. He was still more surprised to observe that I rarely failed in my object. He was a better angler than myself — at least, he threw a straighter and longer line; but he had the bad habit of striking strongly, and it was he who lost for me, in the act of hooking a fish, the casting-line alluded to, and one of my most killing flies. When tired myself, I would give him the rod, and whether it was that my presence rendered him nervous or not, or that he had conceived a bad habit to be a good one, he was continually missing rises, or "scratching" fish by his "rough and ready" way of striking. I was determined to cure him. We came to a
pool where we always killed fish, and where, from an impending rock, I could plainly see the fly. I gave the young man my rod, and desired him not to strike until I gave him the word. He soon had a rise; I saw the fish and said, "Steady!" When I saw the fish take the fly—and he took it well—and turn with it to descend, I said, very quietly, "Now then; strike gently." He did as he was bade, and hooked the fish, saying, when he had done so, "If I kill her, I'll nae strike fiercely agen." I was confident, from the movements of the fish, that it was firmly hooked, and told him to play his prey boldly. He very easily killed it, though it was a "black" grilse, that is, not a fresh run one, of very large size, and, on examination, we found it hooked through and through beyond the hard cartilage at the angle of the mouth. He was then convinced, and that he might be thoroughly so, I allowed him, during the day, to kill a couple more salmon, which he did by gentle and somewhat slow striking. This lesson to the lad was of use to myself, for I saw demonstrated the folly of striking roughly, by the success in other hands attendant on adopting the contrary method.

Playing a Salmon. — Many a trout fly-fisher is deterred from fishing for salmon by the
accounts—the highly exaggerated accounts—he has heard of the agility and strength of that fish. That it is strong and agile, cannot be gainsaid: if it were not, angling for it would not be the exciting sport it is. But with all its strength and agility, it must succumb to the good rod and line. In my opinion it is as easy, and frequently more so, to catch, by fly-fishing, a salmon of fifteen pounds' weight, with a good rod of seventeen feet in length and other tackle to match, as it is to kill a three-pound trout with the ordinary trouting fly-tackle. The strength and enduring powers of salmon are not to be calculated by size. I have seen a four-pound grilse combat with the angler for twenty minutes, and a twelve-pound salmon yield to the same rod and line in less than ten minutes. I just now used the term "black" grilse. I'll explain why I did so. I hold that, generally speaking, a "black" grilse, of seven or eight pounds in weight, is stronger, and certainly more agile, than a fresh-run salmon of eighteen pounds. This seems strange, particularly when the salmon is not only by far the larger, but is the better conditioned fish of the two. Yes, in better condition for the table, but not for a struggle with the angler. The fatted calf, forced to extraordinary effort, will
soon pant and flag, whilst the lean one of the hill-side is almost as nimble as a hind, and strong and stout in proportion. When salmon first come from the sea, obesity impedes their muscular powers, and their fins are white and soft, just as if they had been parboiled. After a sojourn of a couple of weeks in fresh water, their fibres or muscles become nearly divested of fatty matter; the rays of their fins assume the colour and consistency of whalebone; in fine, they become a thin, black, ugly, but strong, active, and enduring, fish. They have left the rich pasture for the strengthening, but not fattening, food of the stable. I dare say the trout-fisher, seeing one of these small black gentlemen on a fishmonger's slab, would fancy it a thing easily landed with rod and line, whilst he would shudder at the thought of a tussel with the fat, silver-sided, eighteen-pounder, lying beside the black dwarf. Let him undeceive himself; but, at the same time, let him take courage by reflecting that what is possible for one man to execute is possible for another.

The first grand rule in playing a fish, is never, when it can be helped, to allow the line to slacken. An over slack line is worse than an over tight line, a fact always to be borne in mind. The moment a fish is hooked lift your rod's point, and,
if your fish rushes from you, follow him with your rod well up and your line taut, bearing upon him moderately. If your winch is loose in its play, you must hold the line in the fingers of your left hand to prevent it running slackly, that is, faster than the fish is going; but if your winch is a good check one, of somewhat stiffish play, the precaution of holding the line between the fingers will be unnecessary, as it will not run off without being borne upon by the fish, and, consequently, will remain taut as long as the fish keeps scudding away. At first, I would not bear heavily on a fish, unless he were making for dangerous quarters, and, in such event, I would stop him if I could. If he be in fair water, I would at first, and until his strength began to fail, play him with a long, tightish line, for the more of it he carries and drags after him, the sooner will he display symptoms of weakness. As soon as he does, bear upon him gently, winding up slowly at the same time, and bringing him towards you in the direction of some safe place. If he sink towards the bottom, wind up your line and prevent him from descending entirely, keeping him clear from any thing he can work his head or body against. Whilst he so remains, butt him—that is, present the butt-end of the rod towards him, which will cause him to feel
the power of the strongest parts of the rod, and the more he "jiggers," or shakes himself to and fro by working his head and tail this way and that, from side to side, in the water, the sooner will his strength and courage fail him. If he remain too long stationary and sulky, you must devise some means to make him take another race, for running with a restraining bit in his mouth soon ends in a fatal career. Pull him up after he has run a moderate course, and by this time you may, without danger, wind up tightly and force him within reach of gaff or landing-net. The latter I prefer for grilse or small salmon.

I have now shown how to play a fish under ordinary circumstances. Under extraordinary or difficult ones, there can be no fixed rule. Tact and judgment must be your guides. Whenever I saw danger of a fish fouling the line, I would try to make it project from the water as perpendicularly as possible, and would give the fish no more of it than I could help. This is the only way to guide the fish clear of any obstructions in the water—rocks, roots, and so forth. A fish hooked in a pool free of obstructions, will more probably at first struggle with you in it, and then finding he cannot beat you in open plain, he will be off, if you let him, for any aquatic fastness he may be
acquainted with. I am for stopping him in his retreat to such vantage ground, by butting him nervously—trying the very ultimate powers of my tackle. It is far better to lose the fish than it, and you may lose both, if he succeed in getting amongst large stones, rocks, or into some corner where neither gaff nor landing-net can reach him, and where, if he sulks, you will find much difficulty in so humouring him as to induce him to move into fair ground again. A fish rushing for dangerous quarters is, I think, more easily prevented from doing so by butting him with the rod projecting sideways, than by holding it back over the shoulder. I would hold it back almost horizontally over the upper-arm of the hand that grasps the rod above the winch, and that hand should firmly clench the butt as far up it as is conveniently possible. When a rod is so held, I think there is more power in it than when it is held over the shoulder, and that it is more easily manipulated and managed, eased or put to the strain with greater tact, because one can, not only feel, but see, the amount of pressure upon it.

Strict attention to what I am about to write should be paid. I have generally, indeed, almost invariably, found, that a fish firmly hooked, descends *instanter* towards the bottom, and fights
under water; whereas, on the other hand, a fish slightly hooked, forthwith commences his struggles on the surface, and very speedily takes it into his head to show you what a very clever voltigeur and tumbler he is, by throwing somersets out of the water. I like not these exhibitions. They are proofs of consciousness on the part of the salmon-saltinbanque, that he has the power of disappearing through some trap-door. I know but of one way to undeceive the silver-bedecked harlequin. When he made his vault I should do nothing to impede it, and in his descent I should offer no check of tightened line. On the contrary, the point of the rod should be lowered until the fish had descended into the water, and then it should be elevated, but not so much as to produce extreme tightness of line. Nothing can be more dangerous than to hold hard on a springing fish, particularly in its descent. The mere weight of the falling fish, if resisted, will break the hook-hold. If you can manage by gentle treatment to persuade a slightly hooked fish to contest the matter with you, for a moment or two, beneath the water's surface, there is every probability of the hook getting more firmly fixed, and then you will have nearly the usual chance of success. I have sometimes hooked a salmon, and seen him, to my dismay,
throw, in rapid succession, several somersets, six feet high or more, and then with a species of ferocity plunge beneath the water, and there "jigger" away, making the rod quiver as though he who held it were stricken with the palsy. The somersets would be repeated, and, finally, the fish would have recourse to a desperate and lengthened rush. At length, after a protracted struggle, my quarry would yield and be bagged. I would then find that he was hooked foul, that is, outside of the mouth, in some part of the body, and my dismay and wonderment would cease at one and the same time. Now, to return to the fish that sinks the moment he is hooked. You will generally speaking kill him if you play him according to the directions I have just been writing.

How to fish a Salmon-River.—Whenever it is at all convenient, a river should be fished upwards, in the direction of its source, rather than downwards, for the reason that it is far better to begin at the tail of a pool or stream than at the head. If you begin at the head of a pool, there are many chances to one that, if you hook a salmon there, he will take you down stream, and disturb all the fish that come in his way,—all the fish in the lower part of the pool, which you have not as yet fished. Besides, the
lower parts of pools are usually the best, and should therefore be fished whilst as yet in an undisturbed state. By fishing a river upwards, much time is spared, for you proceed straight from pool to pool, and are not obliged continually to advance and then retrace your steps, which you must do in fishing a river downwards, unless, indeed, you begin at the heads of pools. As I wish that everything connected with fly-fishing for salmon should be performed in the most regular way, I recommend up-river fishing, though in doing so I know I lay myself open to the charge of hyper-punctiliousness. One way, many will say, is as good as another. I do not think so; for I maintain that, in fishing a river downwards, you waste time and pedestrian labour. Whenever it cannot be obviated, there is an end to the matter. Always fish first the river-side next to you, then the middle of it, and afterwards the opposite side, if you can reach it. There are many pools and places which ought to be fished from their heads. This may sometimes be done by having recourse to small rocks, which, running out into the river towards the head of a stream, serve as stepping stones, from the last of which you may throw straight before you down the pool, which is a very great advantage. Wading, however, is the
only way, generally speaking, effectively adapted to straight-ahead fishing. Angling straight before you from the head of a pool, unless, indeed, it be a very long one, will enable you to work your fly from bottom to top, and to begin working it from the very moment it drops into the water. Such is not the case when you are obliged to cast obliquely across the water. Your fly must then be brought towards you, and a good deal of the river is lost before you can bring your fly round into the current, and work it efficiently and attractively against the stream.

The Parts of Rivers that should be fished.—The most experienced salmon-fisher in the world will find a difficulty in choosing what are called "the best casts," on his fishing for the first time any river. The most likely-looking spots are frequently without fish from some cause he cannot of himself know, but which is known in the vicinity. Something unknown to him may have happened to disarrange the best-looking pool, and drive away the salmon from it. Its bottom may have been disturbed by a flood sweeping it away, or by adding to it in the shape of fresh gravel or other accumulations. I saw, on the Shin, a certain portion of a good pool destroyed by the formation into it of a little jetty,
NECESSITY OF ANGLING-PILOTS.

to enable anglers, without wetting their feet, to reach the further side of the pool, which was its best part. I consider a guide always necessary to an angler, no matter how great his ability and experience, who fishes a salmon river for the first time. Without a guide, you are liable to fish spots where salmon are not, and to pass by those in which they are. Your guide should be himself an angler, or have been one; and he should not only know all the best parts of the river for salmon, and the flies they take, but he must be honestly willing to give you the information he possesses. In the absence of a guide, take it as a general rule that salmon are seldom seen resting on a smooth, gravelly, or muddy bottom. They incline towards lying amongst rocks and large stones; and if a rapid current runs through them, the angler must work his fly, not in the middle of it, but by each side of it, for it is there salmon lie, between the still and the rapid water. Salmon very seldom lie in the middle of a rapid current; they could not do so without over-exertion. In rocky or stony pools, where the current is moderate, salmon lie in almost every part — before and behind, and between small rocks, and at the extreme end of the pool, where it is falling somewhat rapidly to form the head of the next stream below.
Two rocks or large stones opposite to each other, and somewhat apart, form two currents which meet in an angle; within, or a little above this angular point, salmon constantly lie. The fly should be thrown a little below the angular, or pointed, meeting of the currents, and then be worked first straight up the middle between them, and then on the inner side of each current. In good rivers I have seldom failed to find fish in spots like the last described. I would never fish in the boiling foam, underneath waterfalls and weirs; but where this water runs smoothly and swiftly away, I would fish most carefully, as it is there those salmon lie which have been, in their first attempts, unable to surmount the falls or weirs.

When fishing, in February or March, early rivers, you will find salmon take well on mild, soft days, after frosty nights; but then they will be invariably found at the tails of pools, no matter in what part of the river those pools may be. In the early spring months, when there is a succession of fine open weather, salmon are found in all parts of pools, heads and tails, and if in the latter localities there be a large block of stone forming an easily-stemmed eddy, they will be found in it; because it is at the same time a
good resting and a good feeding-place. Salmon fight for such comfortable spots, the strongest and bravest taking possession of them, and when one fish is hooked and taken away, another fish invariably fills the vacated locality. It is for this reason, that a generally favourite spot is seldom without an aquatic tenant. Fish fresh from the sea, and found in the streams and pools near it, take the fly with far more avidity than those that have been long in the rivers. There are several reasons for this; the fly is a new object for them, they have not as yet been scratched, pricked, or hooked by it, and being satiated with sea-food, such as fish, salt-water insects, and so forth, they seek for some substitute, and fancy they may find it in that nondescript fabric, termed a salmon-fly.

I have now, as plainly as I could, and with a steady view to truth and practical utility, told all I know about casting the line, working the fly in the water, hooking and playing a fish. I have given my opinion as to the best salmon-rods, winches, and lines. I have shown how a river ought to be fished, where it should be fished, and I have added a variety of corollary information. I dare not think myself orthodox, and if any kind being more skilled in piscatorial
polemics than I am, will, in a spirit of toleration, convince me of any halieutic heresies I may herein have promulgated, I do solemnly vow to recant them publicly in a second edition of "The Book of the Salmon."

Another hint, on concluding this chapter. In fine late spring, summer, and early autumn weather, salmon rise best of mornings and evenings; before 10 o'clock A.M., and after 5 o'clock P.M. In early spring-tide, I consider the best hours for salmon-fishing are those between 10 A.M. and 4 P.M. It is complete loss of time to fly-fish for salmon in the middle of the day, when the water is low and clear, and the sun shining out cloudlessly. The attention of the reader is directed to what is said about the river Spey, and night-fishing, in the next chapter.
CHAPTER IV.

ON SALMON FLIES: MATERIALS OF WHICH THEY ARE MADE. — SPECIAL AND GENERAL LISTS OF THEM. — THOSE THAT ARE MERELY LOCAL, AND THOSE THAT ARE GENERAL, KILLERS.

If I were even to contemplate telling my readers that I knew why and wherefore salmon rose from the depths of the water and seized upon what are called salmon-flies, I should consider myself meditating an arch-deception. This why and wherefore (I make an unity of the two) puzzles me as much as ever were puzzled those learned writers of the Lower Empire and early mediæval times, who confused themselves and the world by lucubrations as to how many angels, or spirits floating between earth and heaven, could dance on the point of a needle. A dissertation to prove why salmon took one artificial fly, and rejected another, which other salmon afterwards very willingly take, would just be as sensible and profitable as that referring to the angels—fairies if you will—and the needle's point. Many and many an hour do I pass in speculative surprise and open-mouthed wonderment, for there
is nothing—I am alluding to minor matters—that astonishes me more than the effects of a salmon-fly manoeuvred after a certain fashion through the waters of a salmon-river.

There are some—clever and minute observers—who maintain that there exists a likeness between salmon-flies and certain insects. I wish there did; but I could never see the slightest likeness, excepting, perhaps, in two or three of the flies, out of the hundreds that are used. The living insect commonly named the "dragon-fly," is also called by some the "pike-fly," by others the "salmon-fly." I think it merits the second better than the last name; first, because it is commonly found amongst the reeds and sedges of ponds; and secondly, because an artificial fly can be made like it, but of larger size, which will be taken more readily by pike than salmon. The larger and rougher sort of artificial pike-flies, salmon will not rise at; but one made delicately, somewhat after the fashion of the third beautiful fly in the first plate or frontispiece, and styled "Erin-go-Bragh," will attract that capricious fish. Flies of that sort are the only ones that resemble living insects, and then only partly, viz. in the colour and shape of the body, for their wings are not like those of any insect ever
seen or found in the heavens above, the earth beneath, or the waters under the earth. Amongst my plates of flies, will be found a beauty—a piscatory Peri—which I have, in justice to the artificial creature, christened "Ondine." In the north of Ireland it is called the "Spirit-fly," and the able artist who made the model for the engraving, declares that it is an imitation of certain natural flies which he has seen. I fancy this a day-dream of angling genius. Perhaps, like the Phidian Venus, it is a statue made up of the separate beauties of divers animated models. Be that as it may, I never saw an insect like it, or any thing like it, and all I know about it is, that salmon will take it eagerly in certain rivers.

In trout-fishing with the fly, I shall not as yet abandon my theory insisted upon in my "Hand-Book of Angling," perhaps too dogmatically, but certainly too pungently, as far as regards certain Scotch writers of the anti-imitation school. That theory is, that trout-flies can be well imitated, and that the nearer the imitation the better. It is now the fashion to maintain the contrary. Be it so. But if ever I fly-fish for trout again, and see living insects "out"—be they March-browns, oak-flies, green-drakes, &c.—I shall certainly use
the best imitations of them I may have in my fly-book, in preference to nondescripts, as recommended by the innovating piscatorial philosophers. If I am obstinate, I cannot help it. My imitation theory extends only to the common river, non-migratory trout, and to the grayling; I totally abandon it with respect to salmon, and all migratory salmonidæ.* They are as capricious as the days are long. Account for it? — Alas! I cannot. But I may suggest that, as the natural history and habits of salmon are abnormal, or normal only as per se, I do not see why their appetites or tastes for food should not be also abnormal, or beyond all fixed rule.

Some tell me that salmon-flies are taken for butterflies or for birds by salmon. God bless my heart! We have no humming-birds in this country, or insects of Cashmere. Look at fly No. 1. in the frontispiece — "The Goldfinch," — and in what fairy fields will you find bird or insect like that? Look at that gorgeous artificial, "The Shannon," in plate No. 2., and tell me where, in this clime of ours, you will find living thing possessing the tenth of a tithe of its brilliancy. Yet these splendid formations of feather, gold, and dyed fur, are especial attractions for the salmon of the Shannon

* It holds good with the insectivorous carp tribe.
and of the river Erne. The salmon of other rivers despise them. In Tweed water they would be fish-frights: There, salmon prefer Nubian beauty—for instance, the dusky "Toppy" of plate No. 5. Behold me now in another dilemma. Is the fly called "The Goldfinch," or that called "The Shannon," bred on the banks of that famous river? Does the Tweed produce black insects, with wings tipped with white, like "The Toppy?" I wish somebody would say, "Yes;" and produce specimens. If "The Goldfinch" were a general fly, if "The Shannon" or "The Toppy" were one, I should not be confused as I am, for then I should see that one general taste prevailed amongst salmon, that it was as regular as most of their habits are in every river, whether near or far apart; whereas, the tastes or likings of salmon for flies differ and contrast as widely as any set of rare-ree things, collected from every point of the compass, and jumbled together in kaleidoscope-confusion. No man, out of Hanwell, can, if he considers what I have just said, imagine for an instant that a salmon takes a salmon-fly as being the "counterfeit presentment" of any sort of edible it has ever tasted. It takes it unquestionably for some animated, edible substance; and that is all I know about the matter.
It will be asked by the less than half-learned salmon-angler, why I have given so long a list of widely varying and only slightly varying salmon-flies. I will tell him. Though there are general flies that will kill in the majority of rivers, they will not always do so, and they must be only used for want of the better local flies, or when salmon-caprice requires a change—when there has been a surfeit of daily bread. The salmon of every river in the empire have favourite flies, some widely differing in size and colour, some less so; and a descriptive and special seriatim catalogue of them must necessarily be a long one. I will grant that it sometimes happens that a Shannon fly will kill in the Tweed and vice versa, or that a Spey fly will kill in the Shin, or that a Blackwater fly will kill at Ballyshannon or in the Bann; but this forms the exception and not the rule. The flies for each river have some specific characteristic. Thus Tweed flies are, generally speaking, of dark or subdued hues, with plain unmixed wings. Shannon flies have quite a contrary speciality; they are always of gay colours, and sometimes of very gay colours, as to their bodies; and the crest-feathers, or toppings of the golden pheasant, always form their wings, so that a chief part of each fly is as brilliant as can be. Flies with fiery brown or
brilliant claret bodies, kill well in the Bann, north of Ireland, whilst in the south, as in the Lee, near Cork, blue or ash-coloured bodies are the best. All sorts of diversities exist, from the dingy-looking Welsh fly to the silver-laced one of the Shin. As I intimated before, I wish it were not so, for then I should be saved much trouble and embarrassment. But as it is not, and as salmon are great admirers of a variety of costumes, I felt it my duty to cater far and near for their varying and fanciful fastidiosness. Hence I have considered it necessary to cut out patterns such as I have known or heard to be extremely in vogue amongst the aristocratic denizens of every decent river in the empire.

I beg the reader to bear in mind that whenever I describe a favourite, a good, or a general fly, I append to my description a note of recommendation. I also solicit attention to this great rule—that large gaudy flies suit only deep and somewhat turbid waters, and that small, sombre-hued flies are fittest for low and clear water. Flies of medium size and mediocre brilliancy of colours are appropriate for water moderately deep and moderately limpid; and, above all, I tell him who would successfully angle for salmon, that the weather-glass must be his chief guide. With mer-
cury falling, no salmon will be seen rising except for pastime or something of that sort; with mercury rising, salmon will rise too, not for pastime, but for pasture, if the proper pabulum be presented to them. I now proceed to enumerate the materials, not all of them, but pretty nearly all, of which salmon-flies are made.

Feathers, Fur, and so forth, for Salmon-Flies. — The chief feathers are, golden pheasant crest-feathers, commonly called "toppings;" neck, breast, rump, and tail-feathers of the same bird, and frequently some of the back-feathers; wing, tail, and body-feathers of the silver pheasant; tail and wing-feathers of the Argus pheasant; and the crest-feathers of the Hymalayan pheasant; wing, tail, and body-feathers of the bustard; back, rump, and tail-feathers of the guinea-hen; feathers from the body and tail of the jungle-cock and cock of the rock; turkey tail-feathers of nearly all colours; large common cock's hackles of every hue; wood-duck's feathers, those tipped with black and white lines, and found on each side, just above the tail; back-feathers, down to the tail, of the shovel-duck; body, wing, and tail-feathers of the heron; neck, body, wing, and tail-feathers of the bittern; light brown rump and neck-feathers of the grouse; red, green, blue,
and yellow macaw and parrot's feathers; red ibis feathers; breast-feathers of the toucan; body and tail-feathers of the trogan; jay's blue wing-feathers; kingfisher's blue feathers, near the tail; blue and red chatterer's feathers; peacock's wing and tail-feathers; tail-feathers of the kite; mallard and teal's feathers, from the back and beneath the wings; common cock's hackles dyed of every colour; black ostrich feathers.

The above feathers, or fibres of them, will make the wings, tails, legs, and heads of all our best salmon-flies.

Many sorts of fur are used for the bodies; but pig's wool, or its soft hair or down, and mohair dyed every colour, and floss silk of various hues, are the most common materials for the construction of the tags, bodies, and heads of salmon-flies. Pig's wool can be easily dyed, and is most valuable, because it resists the water, does not bag or cake in it like sheep's wool, and retains in it its natural or artificial colours. Mohair is excellent for the bodies of middle-sized and not over gaudy flies; floss silks for small gaudy flies. Gold and silver flat tinsel, and round twist of the same colours, are necessary for the ribbing of the generality of flies. Seal's fur dyed variously, is
excellent for the tags, bodies, and heads of large and middle-sized flies.

The best naturally-coloured cock's hackles are duns of every shade, black, brown, and black red, ginger, grizzled, grey, and dark red or "furnace" hackle, which is black at the outside fibre-tips, and also black at each side of the stem that runs through it. Hackles should be plucked in winter from old male birds in their full plumage. The fibres of the feathers of chickens or hens resist the action of the water badly.

How Feathers, Wools, and Furs are Dyed.—The best vessel for dying is a Wedgwood-ware pipkin, and one that will hold a quart of fluid will be large enough for all ordinary purposes. Before dyeing pig's hair or wool, or mohair, each must be scoured of its grease and dirt by immersion and boiling for half an hour in strong soap-lees. Feathers, the chief ones used being hackles, must be also cleansed by washing them with soap in warm water. The principal colours to be obtained are black, brown, blue, red, and yellow, and by combining, in the process of dyeing, those colours, all other hues and shades can be procured. The reader is requested to bear in mind that the art of dyeing is a very delicate one, requiring minute attention and no small expe-
The experimental student must exercise considerable patience, and not be at all discouraged by incipient failures. They will dissolve by degrees into successful results.

Recipe for Blue.—With soft river-water let your pipkin be about three parts full; put it on a slow, clear fire, adding a teaspoonful of "paste-blue," which can be purchased at the colour-shops. Keep stirring it, and when it is more than lukewarm, add a tablespoonful of cold water, into which you have put twelve drops of sulphuric acid. In this dyeing fluid place a quarter of an ounce of material to be dyed, whether pig's hair, hackles, or mohair, taking care that they have been previously thoroughly cleansed as already directed, and rinsed in hot water, and then wrung out just before you put them into the pipkin. Let the whole boil slowly for fifteen or twenty minutes. Then take out your fur or feathers, or whatever material you are dyeing, and rinse in pure cold water. Dry, if possible, in a sunny atmosphere. For stirring your materials in the pipkin always use a clean piece of wood.

For Red.—Water as before in your pipkin, and with it two handfuls of Brazil wood, and a quarter of an ounce of pig's hair, or feathers, or any other material you want to dye. Boil the
whole for half an hour. Take out your material, and cool the dyeing fluid by the addition of a little cold water. When cool, put in sulphuric acid in manner and quantity as before; next, add your material to be dyed, and gently simmer the whole for an hour over a slow fire. Then take out fur or feathers, immerse in cold water, and wring and dry as before. If you want a beautiful claret hue, add, in the first boiling, to the Brazil wood, half the quantity of logwood; and, in the second boiling, a bit of copperas the size of a pea, and the size of a hazel-nut of pearl-ash. Boil an hour, immerse material in cold water, and rinse and dry as before. Take care that the dyeing liquor be cool before you add to it the sulphuric acid.

For Yellow.—Water as before, in which put a handful of bruised Persian berries; boil for an hour, and then add two tablespoonsfuls of turmeric. Put in acid, mohair, &c., in manner and quantity as before; boil for half an hour, take out and rinse in cold water, and dry. The addition of a tablespoonful of Brazil wood will change your brilliant yellow to rich orange.

For Brown.—Water as before, in which boil a handful of walnut-rind, with a very small quantity of red wood, and of logwood the size of a
walnut, for half an hour, together with a quarter of an ounce of the material to be dyed. Take it out, cool the liquor, and add acid as before. Re-insert feathers, or fur, &c., and boil them for another half hour. Rinse and dry as usual. For cinnamon and fiery brown colours, dye in the above fluid hackles, pig's hair, and so forth, that have been already dyed yellow. The fiery brown will require more ingredients in the fluid than the cinnamon colour.

For Black.—Water as before, in which boil two handfuls of logwood one hour; then add a little sumach and elder bark, and boil for half an hour longer. Next put in your feathers, &c., and boil another half hour; take them out, cool your liquor, and add acid; dissolve a bit of copperas the size of a nut, and adding a little argil and soda, boil again for half an hour. Take out your feathers, fur, or hair occasionally, as exposure to air during the process of dyeing tends to promote and fix the black colour.

A mixture of blue and red dyeing liquor boiled together, and afterwards cooled, and acid added to it, will produce a purple colour.

A mixture of blue and yellow dyeing liquor will produce, in accordance with your varying and modifying it, greens of all shades.
A mixture of blue, red, and yellow liquor produces bright olives, the hues of which may be sobered by the introduction of logwood.

For Bright Scarlet.—Water as usual, in which put a teaspoonful of crystalised tartar. In this liquid boil the materials you are about to dye; take them out, and put in a tablespoonful of powdered cochineal and a teaspoonful of "grain spirit," which can be bought at the drysalter's. When in a simmering state re-introduce your materials—feathers, or fur, &c., and boil the whole gently for half an hour. Wash, rinse, and dry your materials as usual.

Yellow, and its Varieties for Feathers.—The recipe already given for dyeing yellow, suits pig's wool, mohair, and furs best. The present recipe is better for feathers, hackles, &c. Boil two or three handfuls of yellow wood one hour in a quart of soft water; wash the feathers, be they mottled mallard, or any sort of hackle (light-coloured ones are the best to be dyed yellow), in soap and hot water. They must be tied in bunches at the quill end. Boil these bunches a short time in a pint of water, to which you have added a large spoonful of alum and tartar, in a pipkin. Take them out and immerse them in your yellow dyeing liquor, and let it simmer for
A SINGLE FEATHER DYED VARIOUSLY. 81

an hour or two, more or less, according to your desire for a paler or deeper yellow. Finally, take out the feathers, and rinse them in hard spring water. Red hackles, boiled in a similar liquor, will become brown or amber. When you want yellow-greens, either of hackles or mohair, add blue paste, or indigo steeped in water for twenty-four hours, to your yellow liquor, and by augmenting or diminishing the quantity of blue, you will obtain several shades of yellow-green.

I recommend the following to especial attention. It shows very simply how one and the same feather may be dyed party-coloured, made, as it were, a harlequin of. Roll some thread tightly round a bunch of white hackles, leaving a quarter of an inch uncovered at the points. Dip in your yellow or other dye, and the points of the hackles only will be dyed. Tie over the dyed tips with thread, and unravel a little of the first thread, tied on so as to expose a portion of the feathers; dip again in red dyeing liquor, or in any other dye you like, and you will have a second division of colour next the yellow. Proceed in like fashion the whole extent of the feather, and you will give it as many stripes of different colours as you may require. When performing this pretty and useful operation, you
should have on the fire at the same time several pipkins containing the requisite dyes.

The above instructions are derived from a most useful little work, entitled "Blacker's Art of Fly-making and Dyeing," and published by him at 54. Dean Street, Soho. To complete the subject of dyeing, I'll have recourse to the second edition of my own "Handbook of Angling," which (p. 94.) says: — "Into a pipkin three parts filled with soft water, put the feathers to be dyed, and when they are thoroughly wetted, add a small quantity of sulphate of iron. Simmer over a moderate fire for a few minutes, and the feathers will acquire what is technically called the colour-base or mordant. Remove the liquor from the feathers, and put to them instead a smaller quantity of soft water, and when it is of a simmering heat, add a small quantity of powdered Aleppo galls. The requisite shades of dun colour may be obtained by varying the quantities of the iron and galls. For a full dark dun, add sufficient quantities of the sulphate and the galls. By increasing or diminishing the proportion of either of these articles, you will obtain duns of divers shades. If logwood be used instead of galls, a different tint will be the result. Madder, camwood, the bark of the alder-tree, the fresh outer covering of wal-
nuts, produce different hues. Galls, logwood, and madder, should however be omitted when the colouring is intended to approach a red or brown. The light shades in all cases should be first gained, and any other darker hue added afterwards. Hard water should never be used in dyeing. Having given to the feathers their mordant or base, as already directed, add either sulphate of iron, sulphate of alum, acetate of alum, or acetate of copper, according to the intended shade. Wash the feathers from the mordant, and put them in a strong decoction of that plant which dyers call 'weld.' Simmer them in this a few minutes, strengthening or weakening the weld-decoction in proportion as the colour is to be more or less brilliant. A little practice, and the noting of the various results after each trial, will soon render the angler familiar with the methods of varying the colours so as to meet his wishes. These instructions, the author of them, Mr. Packer, in his 'Dyer's Guide,' says apply to furs and wools as well as to feathers."

I approve of the following method—that of Mr. Ronalds—of dyeing white feathers a dun colour:—Make a mordant by dissolving a quarter of an ounce of alum in a pint of water, and boil the feathers in it slightly, taking care that they
should all be thoroughly saturated with the solution; then boil them in other water with fustic, sumach, and a small quantity of copperas, put into it, until they have assumed the required tints. The fustic and copperas will produce a yellow dun tint; the sumach and copperas, a blue dun tint. The greater the quantity of copperas the deeper will be the dye.

The advantage of dyeing one's own feathers, furs, and wool, is great. I have now shown how it may be done with practice and attentive observation.

The best Hooks for Salmon-flies.—
The hooks I invariably use for salmon-fishing are those manufactured by Mr. John Phillips, 18. Ellis's Quay, Dublin. I consider them the best for all properties — shape, temper, strength. There are so many bad imitations of them, that the angler should order them direct from the maker, who, I have reason to know, is a conscientious artisan. I give an engraving of them, showing their shape and several sizes. On looking at the plate it will be seen how I have numbered the hooks. I make No. 1. the largest size, No. 2. the second largest size, and so on to No. 10., which is the smallest size. This is done for the sake of simplicity. When, in my list of flies, I say that a fly is to be dressed on a No. 6. hook,
the reader has only to turn to the opposite plate and he will at once see the size of the hook recommended. Mr. Phillips numbers his hooks differently, thus — No. 4. is his largest hook, and corresponds to my No. 1.; he then proceeds, No. 5., No. 6., No. 7., No. 8., No. 9. He here stops, his No. 9. corresponding with my No. 6., and then he goes on with letters, thus—bb., b., cc., cc. (small), the latter corresponding with my No. 10., which is the smallest hook used in fly-fishing for salmon.

List of Salmon Flies.

At the head of my list of flies I place descriptions of those represented in the plates. They are all standard flies for one river or another, and some of them will kill salmon in any part of the empire. They are given chiefly with the intention of showing what a salmon-fly should be in shape and general colour. In describing how each is made, I have stated my opinion with respect to its killing qualities.

PLATE I. (See Frontispiece.)

No. 1. **The Goldfinch.** — This is a noted salmon-fly suited for low spring, summer, and
autumn water in the Shannon. It is a graceful model of a gaudy fly, simple in its brilliancy. It will kill well at Ballyshannon, and in most rivers of dull mornings and evenings. It is too bright for clear shallow water. It is a standard fly for grilse-fishing in the Shannon. It is made thus: Body, gold-coloured floss silk; black silk tag, tipped with gold tinsel; ginger-hackle and gold tinsel over body; blue jay at the shoulder, and kingfisher over the butts of the wings, which are to consist of eight or nine golden pheasant toppings of middling size. They should project by half an inch beyond the extreme bend of the hook. Feelers, red macaw; head, black ostrich; tail, golden pheasant topping. Hook, No. 5. and 6.

This fly may be advantageously varied, thus: Black floss silk for body; tag, gold colour, tinsel and hackle as before; no blue jay or kingfisher's feather, and head light puce fur. By dressing it in this manner it will not be so gaudy as before.

No. 2. The Britannia. — Body, orange pig's hair, ribbed with gold and silver twist; tag, black ostrich harl; over the body a scarlet or blood-red hackle, and a purple one at and above the shoulder; two toppings for tail; wings, two shovel-duck feathers, four toppings, a blue chatterer's feather each side, and outside and a little under them
some silver pheasant tail-feather; small black head. Hook, No. 4. and 5.

This fly in large rivers, or in those in which fish take large flies, I consider the best of all general flies known to me. I do not think large salmon will refuse it in any river in the world, when water is high and slightly discoloured by recent floods. As Britannia is the ruler of the waves, this name-sake of hers is a ruler of the waters.

No. 3. The Erin-go-Bragh. — Body very long, like those of the large-sized natural dragon-flies, and to be made of green floss silk, and ribbed with gold tinsel and joints of green peacock harl from tag to wings; tag, light yellow and deep orange silk; over body, a dark green or black hackle; round the shoulder deep orange hackle; wings, two toppings mixed with Argus pheasant tail-feather, brown mallard and wood-duck, and a very little blue jay over the butt of the wings, which are to lie long, thin, and delicately over the hook; head, bronze peacock harl; tail, golden pheasant topping. Hook, as long in the shank as a No. 3., but to be of finer wire, and as small in the bend as a No. 6. hook.

This fly is a model of gracefulness, and it will prove exceedingly attractive in pools of medium
depth during the late spring, summer, and early autumn months.

PLATE II.

No. 4. The Shannon.—Body, half light orange, half blue silk, to be ribbed with broad silver tinsel and gold twist; a lightish blue hackle, stripped on one side, over body; blue jay under shoulder; head, seal's fur dyed yellow; tag, orange silk; above it another tag of fur of deeper orange hue; tail, large topping; wings, ten or twelve largest sized toppings, sprigs of the leading tail-feather of the golden pheasant, and four long feelers of blue and yellow macaw. Hook, No. 2.

This is a magnificent fly of the largest size that need be used in any river. It is the standard Shannon-fly in the spring, and whenever the water of that famous river is high. If dressed on a No. 6. hook, it will kill in the summer and autumn. The wing may be beneficially varied by the addition of a large white hackle-feather dyed party-coloured, red, yellow, and blue. The wings of all large Shannon-flies should be chiefly composed of long golden pheasant toppings. Some of them, descriptions of which I shall give under the general title of "Shannon-flies," will kill in the Tweed, the Tay, and the Shin.
No. 5. The Dunkeld.—Body, gold tinsel rolled close, and ribbed with silver twist and yellow hackle; tag of black ostrich, tipped with gold tinsel; tail, small topping and small jungle cock's feather; a little blue jay at shoulder; wings, two small toppings, mixed with brown mallard and peacock's wing-feather; blue, yellow, and red macaw feelers, and black ostrich head. Hook, No. 8.

This is an excellent little fly, one of the smallest that should ever be used, and it will kill well at Ballyshannon and in the Sutherlandshire rivers, on summer and autumn mornings and evenings.

No. 6. Body, puce floss silk, ribbed with silver twist and puce hackle; tag of gold tinsel, orange silk, and black ostrich; small topping for tail; yellow hackle round the butt of the wings, which are to be of two toppings, mixed with bustard and sprigs of red and green parrot's tail, and to have blue kingfisher's at each side; feelers, blue and yellow macaw, and black ostrich head. Hook, No. 8.

This is a good general fly at low water for the northern Scotch and Irish rivers. It and the "Dunkeld" are great favourites with a gentleman connected with our foreign office. He is an excellent salmon-fisher, and these are some of his
patterns. I shall describe a few more of them hereafter, under the head of "General Salmon-flies."

PLATE III.

No. 7. The Blue Jay. — Body, light blue silk, ribbed with gold tinsel; orange tag and black ostrich; tail, small topping; blue jay hackle over body; wings, a topping, mallard, silver pheasant tail, mottled turkey and guinea-fowl feathers; feelers, blue and yellow and red macaw; small black ostrich head. Hook, No. 7. and 8.

This is a favourite general fly of mine at low water. I have killed well with it in Sutherlandshire. In the rivers of the south of Ireland, it is a standard fly. I would vary it thus: — Tail, sprigs of golden pheasant neck-feather, mallard, and light blue macaw; blue jay over body, and blood-red hackle at the shoulder; and wings, golden pheasant neck-feather, mallard, light blue macaw, and kingfisher. For summer and early autumn mornings and evenings, the body should be of orange, instead of blue floss, silk.

No. 8. Body, yellow mohair, to be ribbed with gold twist and black hackle; tag, yellow floss silk tipped with gold; tail, a small topping; blue jay at shoulder; wings, brown turkey or kite tail-
M. Sepulveda
MERRIAM COLLEGE UNIVERSITY
CAMBRIDGE, MA USA
feather, mixed with golden pheasant tail and neck-feathers, guinea-hen and teal, and a topping bending over the whole; blue and yellow macaw feelers, and blue mohair head. Hook, No. 6.

This is a deadly Sutherlandshire fly, particularly for the Shin and Laxford. It has been to me a plentiful purveyor of salmon. It is a model of a subdued gaudy fly, and will prove a general killer in rivers of moderately high water. The salmon-fisher should never be without it.

No. 9. Body, blue floss silk, ribbed with silver twist; tapering orange tag, and topping for tail; guinea-hen hackle wound close by the silver twist, and thickening and lengthening up to the shoulder; wings, a full mixture of golden pheasant tail and neck-feathers, guinea-hen and teal feathers; blue and yellow long macaw feelers, and bronze peacock harl head. Hook, No. 5. and 6.

This fly is as deadly as the latter, and better suited for day-fishing in deep clear pools and streams. As a general fly, I have the highest opinion of it, and should never fail to try it wherever I roamed, by known or unknown rivers. I recommend it with the confidence of successful experience. It has killed with wings and hackle, after salmon had gnawed off silk for body, and twist for ribbing.
PLATE IV.

No. 10. Body, green mohair, ribbed with gold twist and black hackle; orange tag; and tail of short, half an inch or rather less, orange or yellow macaw feather; wings, silver pheasant tail, peacock wing, teal and guinea-hen feathers; blue and yellow macaw feelers; head, orange mohair, or bright bronze peacock harl. Hook, No. 7. and 8.

This is a famous little fly in low clear water. I killed last year, towards the end of July, in the Shin, twenty-three salmon with it; I should have killed more, but I wished to keep it as a memento mori. It should be used in the day time, for it is not a gaudy fly, and suits bright weather and bright water. It is an Irish pattern.

No. 11. Body, silver-coloured floss silk, ribbed with silver tinsel and gold twist; a fine short-fibred black hackle wound over all; blue jay at the shoulder and a topping for tail; wings, a mixture of brown turkey tail and peacock's wing-feathers, golden pheasant neck, teal, guinea-hen and light brown turkey or kite feathers, with a topping surmounting the whole; blue and yellow macaw feelers, and black ostrich head. Hook, No. 6. and 7.
One of the best general early morning and late evening flies I know of. If dressed on a No. 4 hook, it would kill well in the Shannon, the Tweed, or the Spey, at high water. The wing is a good specimen of the "mixed" wing. Tied on a No. 8 hook, it will be an excellent grilse-fly — one of the very best that can be used of dull days in the rivers of Sutherlandshire.

No. 12. Body, grey donkey's fur, from the butt of the ear, or hedgehog's fur, or grey pig's wool, to be ribbed and tipped with silver tinsel; gold colour tag, and a tip of darker shade under the shoulder; tail, a few sprigs of mallard and golden pheasant neck-feather; wings, mixed fibres of golden pheasant tail and breast-feathers, mallard and brown turkey; feelers, blue macaw; and blue or blood-red head. Hook, No. 4.

This fly is called "the jackass," and is a celebrated killer at Lismore, on the Blackwater, co. Cork. I look upon it as a general fly. If dressed on No. 6 and 7 hooks, it will prove a general summer-fly on all our best rivers, particularly those of the south of Ireland. It is a good sample of a fly, neither too sombre-hued, nor too gaudy. It may be slightly varied with long blood-red tag, and a tip or joint of fur of deeper blood-red colour under the shoulder.
PLATE V.

No. 13. Ondine.—Body, blue peacock, closely ribbed with fine gold twist; two joints of green trogan feather, and one of short red orange hackle under the shoulder; over the butts of the wings, blue jay; small light blue tag, gold tip, and brilliant little topping for tail; wings, a careful mixture of fibres of bustard, silver pheasant, yellow and blue macaw, teal, guinea-hen, and golden pheasant tail and neck-feathers, surmounted by a topping; feelers, blue and yellow macaw, and bright blue silk head. Hook, No. 7. and 8.

None but a connoisseur can fully appreciate the beauties of this fly. It is of composite architecture, but not too florid. Its ornaments are most attractive, and they will suit the tastes of salmon, no matter to what nation they belong. I gaze at it gloatingly. It is a summer and autumn fly—a fatal sorceress then to fresh-run salmon and grilse. Its charms will be most acutely felt in the north of Scotland, and no part of Ireland will be insensible to them.

No. 14. Body, dull yellow mohair, ribbed with gold tinsel, and a long-fibred hackle of the same colour wound over it; tag, a little brown harl; tail, small topping and sprigs of bustard and
guinea-hen feathers; wings, divided and of unseparated fibres of slips from the bustard or peacock’s wing, or from a cinnamon brown and dark mottled turkey tail-feather; feelers, blue and yellow macaw; head, bronze peacock harl. Hook, No. 5.

This is an admirable specimen of a Welsh fly for moderately deep and not over bright water. In the spring it will kill in the Wye, the Eske, the Conway, and the Tivy; and, if dressed of a smaller size, it will prove a general summer-fly for the salmon-rivers of Wales.

No. 15. Toppy.—Body, black pig’s wool or bullock’s hair, slightly ribbed with gold or silver tinsel; tag, crimson silk or mohair, next to it two turns of red hackle; black hackle up the body; tail, yellow mohair picked out; wings, black feather from a turkey’s tail, tipped with white; head, crimson mohair. Hook, No. 5, 6, and 7.

This is a standard Tweed-fly. Each wing of strips of undivided fibres is put on separately. They are therefore fully divided, and project over and by the hook, like the slightly opened blades of a pair of scissors. The wings of the generality of home-made standard Tweed-flies open in the same fashion, and so do many of the
Welsh flies. This sort of wing is represented by figures 14 and 15, plate V., viz. by the two last flies I have just described. To distinguish this wing from the "mixed" wing, I shall call it "Tweed-fashion wing." I am not in love with it; and, in nine cases out of ten, should prefer the mixed wing.

River Shannon Flies.

The great standard Shannon-fly is depicted on the plate No. 2. The reader will be good enough to refer to my written description of it at p. 88. I will now give a description of other large flies for the same river, the wings of which are to be like those of the painted fly, and the hooks on which they are to be dressed of the same size, at least for high spring-tide water.

No. 1. Body, half orange, half black floss silk, over all of which a plain ginger hackle, and silver tinsel and gold twist; blue silk tag, tipped with silver; blue jay at shoulder, and blue fur head. Wings and hook like those of "The Shannon."

No. 2. Pomona-green floss silk body, over which blood-red hackle, stripped on one side; orange tag, jay under shoulder, and blue head. Wings and hook as before.
No. 3. Black floss silk body, silver tinsel and lemon colour hackle over it; orange tag, dark head, and wings and hook as before.

No. 4. Body, all blue or purple floss silk, over which a blue hackle; yellow head, and wings and hook as before.

I now come to six much smaller flies for the river Shannon. They are used in the summer and autumn months, chiefly for grilse, or, as they are called in Ireland, "salmon peal."

At the head of them stands the "Goldfinch," — that beauty standing first in the frontispiece, and described in writing at p. 86. Then comes

No. 2. It is to be similar to the "Goldfinch," except that its body is to be of light-green floss silk.

No. 3. Body, claret floss silk, gold tinsel, and blue jay hackle over it; orange tag, and black ostrich head. Wings, broken-up fibres of blue, yellow, and red macaw, guinea-fowl, and golden pheasant tail-feathers; over the wings, one or two toppings. Hook, No. 5 and 6.

I consider this one of the best types of a gaudily mixed wing, and one that would suit bodies of other flies, made of materials of plain, quaker-like colours.

No. 4. Body like the last; but a guinea-fowl's
hackle, dyed yellow, is to be substituted for the blue jay, and the head is to be of dark blue fur. Wings and hooks as before.

No. 5. Body, light blue floss silk, over which silver tinsel and bustard hackle; topping for tail, and black ostrich harl for head. Wings and hooks as before.

No. 6. Body, black floss silk, gold tinsel, and light brown hackle; orange tag, and tail a few short sprigs of cock of the rock feather; wings, fibres of the same feather, and of guinea-fowl, blue, yellow, and red macaw. Head, wings, and hooks as before.

Every one of the last six flies, if dressed on No. 7. hooks, will suit the Ballyshannon and northern Irish rivers.

River Tweed Flies.

No. 1. Body, purple pig's hair, with a rather long tag of orange pig's hair or wool; purple hackle over body, which is to be ribbed with silver tinsel; blue hackle at the shoulder; wing, cinnamon brown turkey tail-feather, each wing to be thin and long, and of undivided fibres; tail, orange mohair, mixed with golden pheasant neck, and teal feathers. Hook, No. 2. for high
water; to be dressed on smaller hooks for low water.

No. 2. Body, blue pig’s hair; long yellow pig’s hair tag; yellow hackle over tag, and light blue hackle from that to the shoulder; silver tinsel over body; scarlet hackle at head, and underneath red pig’s hair. Wings, white swan’s wing-feather; each wing to be thin and long, and of undivided fibres; tail, red mohair, mixed with a few fibres of scarlet ibis feather. Hooks as before.

No. 3. Body, black pig’s hair, a long tag of red pig’s hair, and between it and the black body a bit of purple pig’s hair; small orange hackle struck over the red tag; silver tinsel, and purple hackle over the black portion of the body; ibis body-feather at shoulder, and underneath a bit of red pig’s hair. Wings, black and white spotted turkey tail-feather tipped with white; tail, orange mohair, mixed with teal feather, and a small topping. Hooks as before.

No. 4. Body, black spaniel’s hair, with a short tag of orange pig’s hair, above which a tag of red and then blue, and over all a purple hackle; to be ribbed with silver, and blue hackle at the shoulder. Wings, two whole black and white feathers of the snipe, which are found under that
bird's wing; blue hackle at shoulder; tail, scarlet ibis mixed with red mohair. Hook, No. 4 and 5.

No. 5. Body, black pig's hair; tag, of orange ditto, above which a claret tag; silver tinsel, black hackle over; blue ditto at shoulder. Wings, light mallard feather of undivided fibres; tail, gold colour mohair, mixed with a few sprigs of golden pheasant neck-feather. Hook, No. 5 and 6.

No. 6. Body, black pig's hair at centre; tag, orange, above which red mohair tag; black hackle over all; silver tinsel; blue pig's hair under wings, which are to be of light brown mallard feather, put on as before; tail, as in the last fly. Hook as before.

No. 7. Body, black in the centre, as in the previous fly; orange and blue tag; black hackle over all; gold tinsel; claret pig's hair at shoulder. Wings, black and white spotted turkey tail-feather, to be divided and of undisturbed fibres; each wing to be thin, and a little longer than the body; tail as before. Hook, No. 6 and 7.

No. 8. Centre of body black; orange, red, and blue tags; gold tinsel; black hackle over all; orange pig's hair at shoulder; wings, light cinnamon turkey tail-feather; tail as before, with a sprig of blue macaw. Hook as before.
No. 9. Body, black mohair; orange tag; black hackle; silver twist; teal wings, small bit of red under them; tail, yellow mohair. Hook, No. 9 and 10.

This fly is of the smallest Tweed size, and the large flies (all of them after patterns by Mr. Forrest, of Kelso) may be reduced to the same dimensions for clear, low, summer water.

Take notice that the wings of all the above flies are put on separately, each wing consisting of an undivided collection of the fibres of the feather of which it is made. They are of the "Tweed-fashion wing," alluded to in describing Plate No. V., and their shapes may be seen in the representations marked No. 14. and No. 15. in the above-mentioned plate. A few of the Tweed-flies, like that marked No. 4. in this list, have wings, each of which consists of a whole feather, stem and all, and merely stripped of the down at the root or quill-end.

Mr. Scrape's Tweed-Flies.

KINMONT WILLIE. — Body, fur of the hare's ear, end of body red mohair or pig's wool; tail, yellow ditto; over the body black cock's hackle; wings, mottled feather from under the wing of a
male teal, and yellow mohair or fur head. Hook, No. 7 and 8.

The Lady of Mertoun.—Body, water-rat's fur, end of body crimson mohair, and a turn or two of red hackle; over the water-rat's fur black hackle; tail yellow, and head crimson mohair. Wings and hooks as before.

Toppy.—This is a favourite of Mr. Scrope's. It is represented in Plate, No. V.

Michael Scott.—Body, black pig's wool, terminated with hare's ear fur and a little crimson mohair, and yellow tail; over the body, black hackle and gold twist; a couple of turns of red hackle above the tail; wings, mottled feather from the back of a drake; head, yellow mohair, and a little hare's fur next it. Hook, No. 4 and 5. This is reckoned a very killing Tweed-fly.

Meg with the Muckle Mouth.—Body, yellow floss silk, ending with a tag of crimson fur, and yellow or orange mohair tail, just above which, a little red hackle; over the body, gold twist and brown hackle. Wings, brown turkey tail, tied Tweed-fashion, and head crimson fur. Hook, No. 5.

Meg in Her Braws.—Body, a mixture of brown and black pig's wool, at the end a green tag, followed by one of crimson mohair; over
body gold twist, and a large furnace hackle; tail and head, yellow mohair; wings, light-brown of the wing-feather of a bittern, and over their roots blue jay hackle. Hook, No. 5.

These last two flies dressed on No. 3. hooks, will suit the Tweed in spring time. Of the above six patterns, Mr. Scrope observes, "I will note one thing, which is, that if you rise a fish with the Lady of Mertoun, and he does not touch her, give him a rest, and come over him with the Toppy, and you have him to a certainty, and vice versa. This I hold to be an invaluable secret, and is the only change that, during my long practice, I have found eminently successful."

Mixed-Wing Tweed-Flies.

Recently, somewhat gaudy-bodied flies, with mixed wings, have killed well in the Tweed, frequently better than the old standard flies. I shall give a short list of these successful substitutes.

No. 1. Body, purple pig's hair; orange and red tag, tipped with gold tinsel; a topping for tail; body to be ribbed with silver tinsel and gold twist, and to have a purple hackle struck from the tags to the wings, over the shoulder of which
there is to be a jay's hackle. Wings, two toppings, silver and golden pheasant tail, guinea-hen, mallard, teal, and blue macaw; head, orange pig's hair, and feelers of blue and yellow macaw. Hook, No. 6, 7, and 8.

I guarantee this fly as a killer when the regular Tweed-flies fail, especially in summer; indeed, at any period of somewhat low water. With a fly of this pattern tied on a No. 7. hook, Lord Henry Bentinck killed, one day, in the Tweed, fourteen salmon. I should use it as a general fly.

No. 2. Body, blue pig's hair and yellow tag; ribbed with gold twist and hackle dyed blue; round the shoulder, jay's hackle; head, red mohair, and a very small topping for tail. Wings, four toppings in the midst of a mixture of bustard, golden pheasant tail and neck-feathers, mallard, Argus pheasant, cock of the rock, guinea-hen, teal, and jungle-cock feathers; feelers, blue and yellow macaw. Hook, No. 4 and 5.

A high-water Tweed-fly, presenting one of the best specimens of an attractively mixed wing. By varying the body, making it frequently gaudy, more frequently not, but rather of a sombre hue, you will produce a valuable general fly.

No. 3. Body, black mohair and yellow tag; over body, silver tinsel and dark purple hackle,
with orange hackle at the shoulder, and blue head. Wings, six toppings, and one small one for tail. Hook, No. 5 and 6.

This beautiful fly will not kill on bright days, or in low bright water; but, under contrary conditions of weather and water, it will prove successful in the Tweed, Shannon, and Ballyshannon.

No. 4. Body, half orange, half black, the black part next the wings, and to be of pig's hair, the whole to be ribbed with gold twist and silver tinsel; a black hackle to be struck from the centre of the body upwards, and a few turns of a yellow hackle to be made beyond the shoulder; dark blue head. Wings, four toppings, having at each side of them a jungle-cock's feather; tail, two or three fibres of golden pheasant's neck-feather. Hook, No. 5 and 6. for full water; and for low water, No. 7 and 8.

No. 5. Body, puce mohair and claret hackle; tag, yellow or orange mohair; to be ribbed with gold twist; orange hackle, blue jay, and kingfisher at shoulder; full, gaudily mixed wings. Hook, No. 6 and 7.

Sutherlandshire Flies and Rivers.

I believe that, at the present time, the rivers of Sutherlandshire will afford more sport to the
salmon and sea-trout fly-fisher than any other streams in the empire. I attribute their superiority to their excellent management by Mr. Andrew Young and others, who zealously carry out the wishes of his Grace the Duke of Sutherland, embodied in instructions communicated by his Grace's chief agents, Mr. Loch, M.P., and Mr. Gunn, to the immediately superintending managers, and by them caused to be minutely carried into effect. I appreciate these rivers so highly, that, after describing the several standard flies for them, I shall write a little sketch of each.

I shall begin with the celebrated river Shin, the best river in Sutherlandshire, and the best I ever fished in. Mr. Young lives at Invershin, at the mouth of the river, and he has the power of permitting gentlemen to angle in it on certain conditions. Last season I killed fifty-four salmon in it in fifty-five hours, and the flies I used were the three represented in Plate No. III., and marked No. 7, 8, 9., with the two numbered 10 and 11. on Plate No. IV. The green-bodied fly, marked No. 10., was the most successful of all; but if I were to fish the Shin again, my favourite summer and autumn fly should be the Ondine of Plate No. V. The next two are local Shin-flies: the third fly is not.
No. 1. Body, orange floss silk; yellow tag, tipped with silver twist; above it black ostrich and red tag; to be ribbed with silver tinsel and gold twist; grouse hackle at centre of the body; teal hackle under shoulder. Wings, two neck-feathers of the golden pheasant, over which a mixture of brown and black, and white spotted turkey tail-feather, with fibres also of the golden pheasant tail-feather, and brown mallard; feelers, blue and yellow macaw; yellow mohair over the roots of the wing, and black ostrich head; tail, a golden pheasant topping. Hook, No. 4. At this size the fly is a large one, fit for the Shin in the spring. For the summer, it should be made on hooks three sizes smaller, and will kill best morning and evening.

No. 2. Body, black floss silk; tag, of yellow-green ditto; below it black ostrich tag, tipped with silver twist; over body, gold tinsel and silver twist; grouse hackle, and round the shoulder guinea-hen hackle. Wings, golden pheasant neck-feather in centre, mixed with a few fibres of the following feathers, viz. peacock wing-feather, light brown, spotted, and cream-coloured turkey tail-feathers, golden pheasant tail and red rump-feathers; feelers of blue and yellow macaw, and black ostrich head; tail, a mixture of red ibis,
mallard, and cream-coloured spotted turkey. Hook, No. 5.

This fly, which is a good one, might be much improved, by dressing it on a No. 6 or 7. hook, making the body long and tapering, and winding over it, by the tinsel, a good short-fibred old black cock's hackle, and putting a short topping for tail.

A deadly Irishman's Summer Shin-Fly. —Body, yellow floss silk, ribbed with gold tinsel; dark brown tag; bright blue hackle over body, and to be full at the shoulder. Wings, fibres of the following feathers: Himalayan pheasant crest-feather, brown turkey, golden pheasant tail and red rump-feather, blue macaw body-feather, golden pheasant neck-feather, guinea-hen, green-sword peacock's feather, small topping; feelers, blue and yellow macaw; head, reddish brown; tail, small topping, mixed with golden pheasant neck-feather, ibis, and mallard. Hook, No. 7, 8, and 9.

The wing of this fly is most attractively mixed, and its attractions will not be confined to the Shin. If dressed on No. 4 and 5. hooks, it will kill in full water in any river in the empire. With me it is a standard fly.

Flies for the River Laxford. — No. 1.
Body, orange floss silk; tag, yellow green ditto, tipped with silver twist, and ribbed with gold tinsel; black hackle, and claret silk under shoulder, round which blue jay hackle. Wings, mixture of the fibres of the following feathers:—black and white turkey tail, bustard, red macaw, guinea-hen, golden pheasant neck-feather, and silver pheasant tail-feather; feelers, blue and yellow macaw; head, black ostrich; tail, a few fibres of mallard dyed yellow. Hook, No. 6 and 7.

No. 2. Body, brown floss silk, tipped with silver twist, and ribbed with silver tinsel and gold twist; fiery brown hackle; blue mohair picked out at the shoulder; wings mixed, and of golden pheasant neck-feather, mallard, brown turkey, teal, blue macaw, and green parrot; feelers, blue and yellow macaw; tail, small topping. Hook, No. 9 and 10.

For the River Inver.—No. 1. Body, pale green floss silk; orange tag, tipped with silver twist, and between them black ostrich tag; to be ribbed with gold tinsel, silver twist, and grouse hackle, and wings mixed thus:—brown spotted turkey tail-feather, peacock's wing, red ibis, teal, guinea-hen, and silver pheasant dyed yellow;
blue and yellow macaw feelers, and black head; small topping for tail. Hook, No. 6 and 7.

No. 2. Body, black floss silk; crimson tag, tipped with black ostrich and gold twist, ribbed with silver tinsel and twist, and black hackle; crimson mohair, picked out under wings, which are to be a mixture of cream-spotted turkey tail, guinea-hen, and teal feathers, golden pheasant neck and tail-feathers, and two or three fibres of bustard; black ostrich head, and topping for tail. Hook, No. 6 and 7.

For the River Brora.—Body, a mixture of blue, green, and yellow pig's hair, silver tinsel, black hackle; wings, peacock wing-feather; tail, red mohair. Hook, No. 7 and 8.

For the Oikel.—No. 1. Body, brick-brown floss silk; red and black ostrich tag, tipped with silver twist; to be ribbed with silver tinsel and gold twist; grouse hackle full under the wings, which are to be of the following fibres: spotted turkey dyed yellow, brown turkey, teal, blue macaw, red ibis, and bustard; black ostrich head, and topping for tail. Hook, No. 7 and 8.

No. 2. Body, yellow brown pig's wool; tag, black ostrich, tipped with gold twist; to be ribbed with gold twist; black red hackle over body, and blue mohair picked out at the shoulder.
Wings, a golden pheasant neck-feather; alongside of it an entire teal's feather, brown spotted turkey, guinea-hen, and wood-duck fibres; black ostrich head, and small topping for tail. Hook, No. 8 and 9.

For the Carron.—Body, black floss silk; orange tag, ostrich and silver tip; to be ribbed with silver tinsel and gold twist; grouse hackle over body. Wings, turkey feather dyed yellow, mallard, silver pheasant tail, guinea-hen, teal, and Argus pheasant fibres; black head, and small topping for tail. Hook, No. 8 and 9.

No. 2. Body, black floss silk; orange and black ostrich tag, tipped with silver twist; to be ribbed with silver twist; black heron hackle; wings, bustard, pea-fowl, silver pheasant, and teal feathers; feelers, blue and yellow macaw; black head, and two fibres of bustard feather for tail. Hook, No. 9.

For the River Kirkaig.—Body, puce mohair; tag, red ditto, tipped with gold twist; to be ribbed with silver tinsel, black hackle, and a bit of orange mohair picked out at the shoulder; wings, bittern and guinea-hen; black head, and orange mohair tail. Hook, No. 8.

General Summer Flies for all the above Rivers.—No. 1. Body, brown mohair;
silver twist and black cock's hackle over; black head, and small topping for tail. Wings, a mixture of guinea-hen and brown mallard feathers. Hook, No. 7 and 8.

No. 2. Body, black mohair, over which black hackle with a piece of orange mohair rolled on and picked out at the head; yellow tag, and small topping for tail. Wings, the spotted peacock wing-feather, neatly tied Tweed-fashion. Hook, No. 8 and 9.

No. 3. Body, claret mohair and claret hackle, and gold tinsel over it; orange tag, and small topping for tail; wings, brown mallard. Hook, No. 9.

No. 4. Body, yellow silk, ribbed with gold tinsel; grouse hackle from the centre upwards; amber hackle at shoulder, and small black ostrich-harl head. Wings and hook as before.

The last four flies mentioned are good lake and sea-trout flies.

Sutherland Rivers briefly described.

The Shin.—This river, if not the best, the second best in Scotland, runs out of Loch Shin, near Lairg, passes by Achany, and runs into an arm of the sea at Invershin, about five miles
higher up than Bonar-bridge. It is not a wide, but it is a rapid river, full of falls, pools, rapids, and streams. From the Shin-bridge to the upper fall—a distance by the river side of about two miles or less—there is excellent fishing, better perhaps than from the upper-fall to the Loch. I think, however, that in the late summer months there is a greater number of large fish above the fall than below it, but by far a greater number of grilse below than above it in July and August. The best spots are Cromartie's pool, Angus's pool, the Ferlun pool, and the Black-stone pool. However, all the intervening streams should be closely fished, particularly those above the lower fall, by the wood side. The best season for large fish is March and April, and for grilse July and August. However, whenever the river is high there is always abundance of fish in the river. They run large, but, generally speaking, are not handsome fish. In Loch Shin there is good trout-fishing, particularly for the *salmo ferox*.

The Laxford.—This little river is not more than four miles long. It is eight miles distant from Scourie. 'Tis a capital angling stream for small salmon and large sea-trout. The latter are more abundant in it than, perhaps, in any other river in Scotland. Its salmon do not average more
than 7lbs. in weight, but they are handsome, lively, and full of game. Its best month is May, for later in the season it is frequently too low. However, after a flood it is invariably good. A hundred sea-trout may be taken in it in a few hours with a small (No. 10. hook) fly, having a bright yellow body, ribbed with gold or silver, a gaudily mixed wing, and blue jay at shoulder. The size should be varied according to the state of the water. This interesting little river, now rented by Earl Grosvenor and Lord Anson, is fed by Loch Stark, a small piece of water, and one of the best in Scotland for sea-trout angling. Twelve dozen, averaging about 2lbs. a piece, having been caught in it with the fly in one day.

The Brora. — This is a small river on the east coast of Sutherlandshire, near Dunrobin Castle. It is, like the Shin, a very early river, and salmon take the fly well in open weather as early as the first week in February. In March, even on a very snowy day, eight fresh-run salmon have been taken by one rod in this river. Its fish are small, but handsome, lively and “wicked.” In the spring they take large flies, as large as those I have recommended for the Shin at high water; but, in bright summer water, the flies must be small, and of sombre hues, like that recom-
mended for this river in the list of Sutherlandshire flies.

The Oikel.—Perhaps I ought to have written "Okiel." The name is spelt and pronounced differently. It is a late river, abounding in grilse after June. Nineteen have been killed in it by one rod in a day. They are very small, but active and strong, and even salmon rarely run heavier than 6lbs. in weight. The river is never, for any considerable length of time, in order—not longer than two or three days after a spate or flood. It is useless to fish above the bridge-fall until late in the season. The Oikel is within a couple of hours' walk of the Shin. There is a small stream, called, I believe, the Jenach, running into the Oikel about half a mile below the bridge. The salmon, though small, are exceedingly handsome, very small in the head, and deep and short in the body. This little river is seldom in order, being usually very low and bright. The angler should fish it "fine and far off," and with the smallest sized grilse fly of dark colours. The fly, marked No. 9. in the first list of Tweed flies, will answer.

The Carron.—This river is in Ross-shire, on the borders of Sutherland, and is the picture of a salmon river. It is not carefully preserved,
and a man must be lucky to kill three or four fish in it in a day. Its salmon, grilse, and sea-trout are handsome and of excellent quality. It runs into the Kyle near Bonar-bridge. The best fishing is about five miles higher up and further on. It is a rapid rocky river, and runs clear after a flood in less than four-and-twenty hours. Small dark and brown-bodied flies, with wings of turkey, mallard, and guinea-hen, are the best for it. A somewhat gaudy mixed wing suits dark days, and on them the "blue jay" of Plate No. III., will prove successful.

The Carsely.—This is another small river running into the Dornoch Kyle at Rose-Hall. It is a good little stream in April and May; but not above the bridge, half a mile higher up than which is a fall salmon do not surmount before June or July. After these months, during August and September, there is fair fishing, provided the river be not too low, in its higher pools and streams, in the direction of its source, at the foot of the celebrated Ben-More Assynt. Carsely-salmon are neither handsome nor large; 10lbs. being an extreme weight. They take best the flies recommended for the Oikel, and should be tempted with some of the small-sized Shin flies.

The Inver.—I ought to have placed this
RIVERS INVER AND KIRKAIG. 117

river between the Shin and the Laxford. It is a better river than the latter, but not so good as the former. It is deemed the second best salmon-angling river in Sutherlandshire. Its salmon are prettily shaped, and of good quality. They are small, active fish, averaging about 8lbs. or 9lbs. in weight. It is not an early river, and few fish are taken in it before the middle of May. Its best months are June and July, yet, afterwards, up to the 15th September, two or three salmon a day may be killed in it. In June and July, favourable days, a good angler will kill in it his eight or ten grilse and salmon. It has been strictly preserved for the last two years. Like the river Shin, it is fed by a large loch (Assynt), and therefore continues long in order after rains. Mr. Dunbar, of Loch-Inver inn, now rents it for the purpose of affording sport to anglers, and he also rents for the same purpose —

 THE KIRKAIG, another river of nearly the same size, distant about three miles from Loch-Inver. Its salmon are celebrated for the beauty of their shape, and the largeness of their size. Fish of between thirty and forty pounds in weight have been killed with the rod in it. It is an early river, and the large fish are caught as early as February and March in its lower pools. A
waterfall, impassable for salmon, about four miles higher up than its mouth, limits angling to that distance. The pools are smooth towards its mouth, but rapid towards the high waterfall; and the fish, being of singular activity and game, afford exciting sport. It is frequently in angling order, because it is fed by a chain of lakes which divides the counties of Ross and Sutherland.

The Naver.—This is a goodly sized stream, and of fair angling repute. However, its salmon are neither large, nor handsome. It may be fished to advantage as early as April, and with the river Oikel flies, and with water in "tune," affords good sport. It lies about twelve miles to the east of Tongue, a town situate in the centre of the northern coast of Sutherlandshire.

The Boggy and the Halladale are two streams not far from the Naver. They are inferior to it. The first is an early, the second a late river. In the former, the Oikel-flies kill; in the latter, a plain red-bodied fly, with brown turkey or mallard feather wings.

Besides the above-named rivers, there are many lesser ones in Sutherlandshire abounding in trout. There are also numerous large and small lochs, in this romantically wild and picturesque county, inhabited by the salmo ferox and large grey lake-
trout, and by thousands of smaller and diverse species. The trout-fisher, therefore, whether he fly-fishes or spins, will find most abundant and varied sport in the mountain waters of this alpine region of North Britain.

Ross-shire Rivers.

The Allapool. — This beautiful little stream is justly considered a good angling one. The late lamented John Hay M'Kenzie, laird of Cromartie, who was one of the best salmon-fishers and deer-stalkers in the north, used to enjoy excellent sport in this river, which was his own, and whose local name is "Cromartie's river." Bright flies suit it best, similar to those recommended for the Shin.

The Dionard. — This river, which runs into the Kyle of Durness, is a small but good one, at least for sea-trout and grilse. It should be fished in June and July, at about three miles from its mouth when it is full, immediately after a heavy fall of rain. The best fly for it is one with body half blue, half yellow mohair or floss silk, the yellow next the wings, which are to be of mottled teal's feather divided. A black red hackle is to be wound over the whole length of the body. Hook, No. 8.
The Rennie and Cannard.—Other rivers in Ross-shire, like those already described. Small passably gaudy flies kill in them.

Flies for various Scotch Rivers.

For the Findhorn.—No. 1. Body, yellow floss silk, ribbed with gold twist, orange and black tag, silver tip, topping for tail; black hackle from the tail up, and guinea-hen hackle at shoulder. Wings, mixed with bustard, tail and neck-feathers of the golden pheasant, silver hen pheasant tail, green peacock and teal feathers, fibres of red, yellow, and blue macaw, kingfisher each side, black head, and the usual feelers. Hook, No. 7 and 8.

No. 2. Body, orange floss silk, ribbed with gold tinsel; a red, black, and brown tag, and small topping for tail, over body grouse hackle or hen Argus pheasant neck-feather, with blue jay at shoulder. Wings, mixed of the following feathers:—bustard, cock of the rock, guinea-hen, yellow macaw, and a topping longer than the other feathers; black head, and the usual feelers. Hook, No. 8.

For the Nairn.—No. 1. Body, different shades of mohair, commencing at the tail, with
FLIES FOR THE DON AND DEE. 121

red, then blue, then brown-red, and, lastly, near the shoulder purple or dark blue, silver twist, and black hackle over all; tail short, of red or orange mohair. Wings full, and of spotted teal’s feather; black head. Hook, No. 8.

RIVERS DON AND DEE IN ABERDEENSHIRE. —These rivers are but tolerable ones. The general fly used for them is one with body, next the bend of the hook, of light blue floss silk, darker blue next the shoulder, silver tip, and silver twist, and black hackle over body. Wings, spotted peacock wing-feather, with a little teal’s feather over it at the back. Hook, No. 6. The following are good flies for the Don and Dee.

No. 2. Body, brown silk or mohair, mixed with a little blue, orange, and a slight tinge of green, to be ribbed with silver twist and furnace hackle. Wings, dun heron or light mallard, varied with teal and bittern wings. Hook, No. 7. At high water, small gaudy flies will kill in both these rivers.
Flies for the Spey.

No. 1. Body, claret floss silk, with some deep yellow-brown pig's hair towards the wings; orange and black ostrich tag, tipped with silver twist; to be ribbed with silver tinsel and gold twist, claret hackle from tail to shoulder, and round the latter grouse hackle. Wings, two golden pheasant neck-feathers, and a topping, light-brown spotted turkey tail and Argus pheasant, guinea-hen, and golden pheasant tail-feathers; over the roots of the wings yellow mohair; black ostrich head, and topping for tail. Hook, No. 3. This is a large-sized spring-fly.

No. 2. Body, puce floss silk, to be ribbed with gold and silver tinsel and yellow green silk thread, and over all one of the pendant feathers of a brown cock's tail. Wings to lie along the back of the hook, and they are to be made of the fibres of a large brown spotted feather from the turkey's tail. Hook, exceedingly long in the shank,—as long as that of a No. 1. hook, but to be finer in the wire and smaller in the bend. A large mackerel-hook, if well tempered, would do. This is the old standard Spey spring-fly.

No. 3. Body, tinsel and hackle the same as
before; wings, brown mallard feather. Hook, No. 4 and 5.

No. 4. Body, cinnamon brown floss silk; hackle, tinsel, and wings like the last fly. Hook, No. 5 and 6.

The two first flies are very large, and only fit for the spring. The three last are smaller, and are summer and autumn flies.

No. 6. Body, near the tail, fiery-brown floss silk; towards the head, from the centre of the body, orange floss silk, ostrich tag tipped with silver twist. The body to be ribbed with silver tinsel and gold twist, orange hackle from tag to wings, under which blue jay hackle. Wings, a golden pheasant neck-feather, and fibres of Argus pheasant, and slightly spotted cream-coloured turkey tail-feathers; black head and red tail. Hook, No. 4 and 5. This is a standard Spey-fly for May and June.

No. 7. Body, puce floss silk, and next the shoulder the body is to be of mohair of the same colour; red and black tag, tipped with gold twist; body to be ribbed with silver tinsel and gold twist; grouse hackle over the puce mohair.
Wings, brown mallard, black and white spotted turkey, and golden pheasant tail-feathers, blue macaw, teal, and light turkey tail-feather, dyed yellow, and bustard; feelers, blue and yellow macaw, black head, and topping for tail. Hook, No. 5 6 and 7. A good summer and autumn fly at low water.

The months of August and September, if the Spey be full, will require flies dressed on No. 3 and 4. hooks, with gaudy bodies and gaudily mixed wings. The bodies should consist of joints of yellow, orange, and red floss silk or pig's wool, with a red or fiery-brown hackle over all. In the summer and autumn months, flies should be ribbed with gold tinsel, but with silver in the spring months.

The Spey and its Tributaries described.

Mr. Dunbar of Loch-Inver has kindly sent me a sketch of the river Spey, executed so much in accordance with my taste that I'll transcribe it in his own words: — "The Spey," he writes, "is perhaps the very best salmon-angling river in Scotland, but it is not a pleasant river to fish, for two reasons; first, you must use a very strong and long rod, at least twenty feet in length; so that, working this all day, becomes very tiresome;
secondly, whoever expects to kill many fish in the Spey must be half amphibious, able to wade up to the middle all day long, for the river is so broad that one cannot, from the shore, throw line long enough to reach it.

"The Spey salmon run very large. Many are killed every season, weighing from between twenty pounds to thirty pounds each; and I have known a few killed of the respective weights of fifty pounds. I myself killed a still larger salmon on the Spey, but always felt a delicacy in telling the weight, as some people might suppose that I was stretching rather a long line.

"There is no river in Britain where there are such large numbers of salmon killed as in the Spey. I have known Mr. Hoggarth's (the great salmon fisheries' contractor of Aberdeen) fishermen take out of a few pools with nets upwards of 1500 salmon in one day. A few years ago Mr. Hoggarth rented on lease a few miles of the Spey at 800l. a year. The rent, I believe, is now reduced to 600l. I have killed salmon on the Spey fifty miles up the river, with sea lice adhering to them, which is a proof of the rapid rate of travelling of the fish, since the parasitical insects drop off the fish after a sojourn of not more than from twenty-four to thirty hours in
fresh water. Spey fish are in general very handsome, with small heads and very broad and deep bodies.

"I have angled in this river in June and July all night, when the water was very low, and with great success. When the days are very bright and the river low, you may fish all day long and not get a single rise; but if you wait until after sunset, all the fish move up to the thin water at the top of the stream; and if there is a brisk wind, and an over-cast, blue, cloudy sky, with no dew falling, you may then begin operations, and before three o'clock in the morning you may bag half-a-dozen salmon, and some of them very large ones. If there is the least dew falling, you may content yourself with walking home, for not a fin will rise at your fly. I may here mention that, at night, you never see the fish rise, nor can you see, with anything like precision, where your line and fly fall on the water; but you may soon get a 'rug' (tug), and off goes your reel with a rattling noise. The fly that answers best at night has a black body, over which very broad silver tinsel is to be thickly wound; the wings are to be of pure white,—of the white wing-feather of the goose or swan. I recollect one night, about five years ago, taking four large salmon out of one pool in
the Spey, when I could not see my fly drop in the water.

"Many gentlemen angle all day long when the river is very low and the weather bright and sunshiny, without taking a single fish. After they return home is the time the natives go to work. I recollect a notorious poaching character showing me, one morning early, no fewer than eight salmon, two of which would weigh upwards of twenty pounds apiece, which he told me he had caught with the fly, after eleven o'clock the night before."

The Avon.—This stream rises in the celebrated Carngorm hills, and empties itself into the Spey at Ballandallach, near the seat of Sir John McPherson Grant. It is one of the most transparent rivers in Scotland. You may see salmon lying at the bottom of pools twelve feet in depth. It is a good angling stream on a dark, cloudy day, and is famous for its sea-trout. The best fly is a small, very dark-bodied one, with teal and woodcock wings. Spinning with the parr, or artificial minnow, may be successfully practised in this river.

The Spean.—This river runs through the braes of Lochabar, and joins the Lochy below Spean-bridge. About seven miles above this
bridge there is a waterfall, over which salmon cannot pass; but below it, until the river joins the Lochy, the pools are numerous and rapid, and in them fish rise well, and are of goodly size. Though a few may be killed in April, June and July are the months for good and certain sport. A plain dark fly is generally used. The old standard Spey-flies kill well, and so do bright-bodied, and gaudily-mixed wing flies.

Three favourite Shannon Flies.

I resume, continued from page 98., my list of flies for the best of "the Irish salmon rivers."

No. 1. Body, yellow at the tail, then blue, then orange, and purple at the shoulder; legs, purple and blue jay hackles, struck from the centre of the body upwards to the wings, which are to consist of two large toppings, extending a quarter of an inch over and beyond the bend of the hook, and to be sprigged at each side with a few fibres of golden pheasant tail, peacock wing, and brown mallard feathers; long feelers of blue and yellow macaw; topping for tail and black head. Hook, No. 3 and 4.

No. 2. Body, purple pig's hair, tag, yellow or orange floss silk, to be ribbed with gold tinsel
and silver twist; topping for tail, from which a dark purple hackle is to be struck up to the wings; jay hackle round the shoulder. Wings, twelve toppings, mixed with guinea-hen, bustard, and Argus pheasant feathers; blue macaw feelers. Hook, No. 2 and 3.

No. 3. Body, half orange, half purple pig's hair, the orange coloured next the tail, wine-purple hackle, struck in from the centre, with an orange hackle round the shoulder, and over it a blue jay hackle. Wings, brown mallard, golden pheasant-tail, neck and toppings mixed with blue macaw and bustard feathers, a little guinea-hen and teal feathers at each side; body to be ribbed with silver tinsel; head, blue pig's hair. Hook, No. 4 and 5.

The wings of the two last flies may be advantageously varied by the addition of two cock of the rock feathers. I would recommend the last fly for the Spey at high water in the late summer and early autumn months.

Ballyshannon Flies.

No. 1. Body, yellow or gold-colour floss silk, ribbed with gold tinsel; black ostrich tag, and two toppings for tail; legs, a bright yellow
hackle from the tail upwards, and a little yellowish-green mohair and blue jay at the shoulder. Wings, two toppings mixed with golden pheasant neck-feathers, and a few fibres of ibis, bustard, mallard, Argus pheasant, peacock wing, yellow macaw, and a little green parrot; head, black ostrich harl. Hook, No. 6 and 7.

No. 2. Body, orange floss silk, ribbed with gold tinsel, a deep orange hackle struck over the body, and blue jay at the shoulder. Wings, two cock of the rock feathers, with a topping at each side of them extending a little longer than they over the bend of the hook, with fibres of mallard and jungle-cock; tail a rather long topping; head black, with a little blue mohair underneath; feelers, blue and yellow macaw. Hooks as before.

No. 3. Body, lilac floss silk, gold twist, and tag of orange mohair; blue dun hackle over all, with jay and kingfisher at the shoulder. Wings, a few fibres of mallard, mixed with toppings, neck and tail-feathers of the golden pheasant, also a few fibres of cock of the rock, bustard, guinea-hen, and green parrot; feelers, blue and yellow macaw. Hook, No. 7 and 8.

No. 4. Body, light blue-dun fur, mixed with yellow mohair, and ribbed with gold tinsel; over body, wound side by side, two grizzled cock's
hackles, dyed yellow and orange; blue jay at shoulder, and underneath it a cock of the rock feather, wound round the throttle. Wings, half-a-dozen middle-sized toppings, mixed with mallard and blue macaw, and on each side of the wings a jungle-cock feather; dark blue head and the usual feelers. Hook, No. 6 and 7.

These four patterns are, to my mind, perfection. Flies dressed after them will be of medium size, tending to small. They will kill in any water in the world, wherein salmon are tempted by brilliant colours, variegated and subdued by an admixture of hues, whose rich beauty surpasses that of splendid gaudiness.

The Ballyshannon, or Erne river, is between three and four miles in length, fed by Loch Erne, and runs into the bay of Donegal, or into the Atlantic thereabouts. There are few rivers in the empire equal to it for the purposes of salmon-angling. It is delightfully situated, and in its vicinity anglers can procure every requisite accommodation. The proprietor of it is liberal, and will allow any gentleman of known respectability to fly-fish in it for a reasonable period. It is, unquestionably, the best river in the north of Ireland.
River Bann Flies.

No. 1. Body, claret pig's hair, gold tinsel, and dark claret hackle struck up from the tail, with an orange hackle round the shoulder, and a yellow tag near the tail, which is to consist of one topping. Wings, brown mallard, mixed with bustard, golden pheasant toppings, neck and tail-feathers; black ostrich harl head, and blue and yellow macaw feelers. Hook, No. 6.

No. 2. Body, fiery-brown pig's wool or mohair, over which gold tinsel and amber hackle, and topping for tail. Wings, brown mallard, and golden pheasant neck-feathers, mixed with bustard and guinea-hen; yellow hackle at the head, which is to be finished off with black ostrich harl; the usual feelers. Hook, No. 6 7 and 8.

This is a general killer in all the best rivers of the north of Ireland.

No. 3. Body, peacock harl, ribbed with gold tinsel and claret hackle; round the shoulder, bright amber hackle; wings the same as those of the last fly, with the addition of a few fibres of cock of the rock feather. Hooks, same sizes as before.

No. 4. Body, purple mohair, and hackle over it of the same colour; gold tinsel, tag, yellow and
light-brown mohair, and topping for tail; orange hackle at shoulder, and blue head. Wings, neck-feathers of the golden pheasant and mallard; feelers of blue and yellow and red macaw. Hook, No. 5 6 and 7.

The four preceding flies are sound specimens of the moderately gaudy.

Flies for the River Bush.

No. 1. Body, orange mohair, and claret hackle over gold tinsel; wings, brown mallard; tail, fibres of the same feather and black ostrich head. Hook, No. 8 and 9.

No. 2. Body, amber coloured mohair, over which gold tinsel, and amber or fiery-brown hackle; small topping for tail. Wings, brown turkey tail-feather and mallard, mixed with a few fibres of golden pheasant neck-feathers; black ostrich head and macaw feelers. Hooks, as before.

No. 3. Body, orange mohair, over which gold twist and orange hackle; blue jay at shoulder, and black head. Wings, brown mallard, and a few fibres of cock of the rock feather. Hooks, as before.

No. 4. Body, peacock harl, ribbed with gold tinsel, and black hackle; amber ditto at shoulder,
and small topping for tail. Wings, brown mallard and fibres of the sword-feather of the peacock's tail. Hooks, as before.

At a place called Bush-mill on this river, there is established a salmon-fishing club on liberal principles. Any gentleman recommended to it will be amicably received by its members, and every facility they can give or procure afforded to him for the enjoyment of sport.

Flies for the Lower Blackwater.

I now come to the best rivers of the extreme south and south-west of Ireland, viz. those of the counties Cork and Kerry. They are good rivers, and I hope the Salmon Fisheries' Act of 1848, has much improved them. I am the more anxious for a consummation of this sort, as I am fully convinced of the good that would result to the province of Munster, from its having well preserved salmon-rivers situated at a *traîet* of thirty hours' duration from the British metropolis. The good would be manifold — commercial and social, profitable and pleasing — reciprocally so to warm-hearted, hospitable Celt, and munificent Saxon. May we see them for the future more frequently together on the romantic banks of the beautiful
Blackwater using in brotherly emulation the following flies: —

No. 1. This fly, a standard one at the celebrated weirs of Lismore, is depicted on Plate No. IV., and described, marked No. 12, at page 93. It may be dressed one size larger, and then it will be of the largest spring size, suitable at that season for the highest water between Lismore and the sea.

No. 2. To be made like the last, substituting a blood-red tag for a gold colour one, and having a joint of dark blood-red coloured pig's hair under the shoulder.

No. 3. Body, light brown olive pig's wool, over which hackle of the same colour, and gold tinsel; tag, golden yellow, and between it and the olive body a very short joint or tag of grey fur; tail, sprigs of mallard and golden pheasant neck-feather. Wings, hooks and feelers like those of the two preceding flies. Head, blue or deep red mohair.

No. 4. Body, one third of it next the tail to be of grey fur, the remainder up to the wings of bright green fur, and same coloured hackle; amber tag, tail as before, blood-red head; wings as before, with the addition of a few green fibres from the sword-feather of the peacock. Hook, No. 4 and 5.
No. 5. Body, bright dark green fur, with a few hairs of golden olive shining through; gold tinsel and golden olive hackle over; bright gold colour tag; wings and head like those of the last fly. Feelers and tail like those of No. 1.

The bodies of the above five flies are best made of pig's wool, or fur dyed of the different colours mentioned. If tied on No. 5 and 6 hooks, they will prove good general summer flies.

No. 6. Body, claret or puce floss silk, over which silver tinsel, and golden olive hackle; tag, golden yellow silk, and above it two turns of black ostrich harl; blue jay over the shoulder round the butts of the wing, which must be a rather gaudily mixed one, and have in it a few fibres of red parrot feather; head, black ostrich. Hook, No. 6 and 7.

No. 7. Small blood-red silk tag; mallard and golden pheasant neck-feathers for tail; next it, but above the tag, a short joint of bright orange silk; remainder of the body bright dark green silk, over which silver tinsel and jay's hackle. Wings rather gaudy, and black ostrich head. Hooks as before.

No. 8. Body, deep bright orange silk, grouse hackle over it, and jay under the shoulder; blood-
red silk tag, above it black ostrich tag; and tail, wings, head, and hooks, as before.

The three last flies are for Blackwater grilse, but in summer the largest salmon will take them. They will kill in the best rivers of Sutherlandshire.

Spring Flies for the Upper Blackwater.

No. 1. Body, squirrel and hedgehog's fur mixed, over which silver tinsel and green and blood-red hackles; pale yellow hackle side by side with the blood-red hackle under shoulder; tag, gold colour silk. Wings, fibres of the golden pheasant breast-feather, turkey tail, mallard, blue macaw, red and green parrot and green peacock harl; black ostrich head. Hook, No. 4 and 5 and for low water, No. 6.

No. 2. Body, four joints of equal proportions—thus; beginning at the tail, brown seal's fur and hackle of same colour, blue fur and hackle, grey fur and hackle, brown seal's fur and hackle repeated, close under wings orange hackle; the first joint next to the tail to be ribbed with gold, the other joints with silver tinsel; tags, orange silk and black ostrich harl. Wings, hooks, and head, as before.

No. 3. Tag, blood-red fur, next it, a short joint
of deep bright orange silk and hackle, a small blood-red hackle struck on next, then a long joint of dark sea-green fur and hackle and gold tinsel, blood-red hackle under shoulder. Wings, hooks, and head, as before. The tails of the last three flies should be of single short fibres of golden pheasant neck-feathers, light blue macaw, mallard, and green and red parrot feathers.

Summer Flies for the Upper Blackwater.

No. 2. This fly is represented in Plate No. III., under the name of "The blue Jay;" and it is described and recommended at page 90.

No. 3. Body, dark grey fur, gold tinsel, side by side with which brown olive and grey hackles. Wings, golden pheasant breast-feather, mallard, light blue macaw and kingfisher; black ostrich head, and blue and yellow macaw feelers. Hook, No. 7 and 8.

No. 4. Body, orange silk, gold tinsel, grouse
and light brown olive hackles, jay under shoulder. Wings, hooks, and head, as before.

No. 5. Same as before, except that for the grouse and olive hackles, two bright brown ones are to be substituted.

The two last flies kill best in summer water when slightly discoloured after rain.

Spring Flies for the River Lee.

This pretty river runs through a chain of hills from Kerry into and through the city of Cork, down to Cove or Queen's-town. It would be a delightful and excellent salmon stream, if its proprietors would unite and put a stop to the destructive practices of the Cork poachers. Even in its present neglected condition, the river Lee will repay the English angler for a se'nnight's visit to it. The four following flies he must use in the spring, or whenever the water is full from the effects of recent floods.

No. 1. Body, triple-jointed; first joint, near the tail, of blue seal's fur and blue hackle; second joint, grey fur and grey hackle; third, and shortest joint, strong fiery-brown fur and similarly coloured hackle; the whole to be ribbed with silver twist; tag, orange silk; tail, a few fibres of blue and red
macaw, mallard, blue peacock, and golden pheasant breast-feathers. Wings, a full mixture of the same feathers as in tail; black ostrich head, and the usual feelers. Hook, No. 4 and 5.

No. 2. Same as the first, with the exception of a bright olive joint in lieu of the fiery-brown one, and a blood-red hackle under the shoulder.

No. 3. Body, orange floss silk, gold tinsel, grouse and bright golden olive hackles wound side by side; jay under wings, which with tag, tail, and head, are to be like those of the first fly. Hook, No. 5 and 6.

No. 4. Two blue and two grey joints of fur and hackles of the same colours to be laid on alternately for body, bright blood-red hackle under shoulder; silver twist, gold tag; wings, head, and hooks, as before.

Settled or Low Water Lee Flies.

No. 1. Tag, blood-red silk, black ostrich harl next, then a short joint of light blue silk, and above it a longer joint of grey fur and grey hackle over it, blue jay under shoulder; the whole body to be ribbed with silver tinsel. Wings, head, and tail of the same fibres, but smaller than those of the 1st high water Lee fly. Hook, No. 7 and 8.
No. 2. Tag, amber coloured seal's fur, black ostrich next to it, then a short light blue silk joint, after which a long joint of grey fur and hackle; under shoulder, brown olive hackle. Wings as before, with two blue kingfisher's feathers at each side. Head, tail, and hooks as before.

No. 3. "Blue Jay," varied with turns of blood-red and gold coloured hackles under shoulder.

No. 4. Body, grey monkey's fur and a few hairs of golden olive mixed with it, silver twist and grey hackle; a blood-red tag at tail and under shoulder. Wings, head, tail, and hooks as before.

Lakes of Killarney - High Spring Water.

No. 1. All shades of brown and olive bodies, with similarly coloured hackles, ribbed with gold; wings, brown mallard, and brown turkey-tail feather; tail, rather heavy of fibres of brown mallard, golden pheasant's neck-feather and blue jay. Hook, No. 7, 8 and 9.

No. 2. Tag, gold colour mohair, tipped with gold twist, then a light blue joint with grey hackle and no tinsel; half a grouse hackle laid next; remainder of body ant-brown fur, hackle of same colour, and gold tinsel; jay under shoulder. Wings,
brown mallard and turkey, with a few fibres of golden pheasant neck-feather; black ostrich head, macaw feelers and hooks as before. I consider this a good general fly.

Killarney Summer-Flies.

Black bodies, blue hackles, and wings as before. Also bodies of hare's ear fur and orange mohair mixed, golden olive hackles, and wings as before. Hare's ear and green golden olive hackle for body, and wings as before. Very dark brown olive fur, same coloured hackle, and wings as before.

The angling glories of these most beautiful lakes have, for the present, nearly departed. The nets of reckless proprietors have dimmed them to the great loss of inn-keepers and poor boat-men. Would that the famous echoes of the caverns, caves, grottoes, and glens of Killarney unceasingly repeated louder and louder still—until proprietors, English and Irish, were driven into the practical adoption of the philanthropic principle—"property has its duties as well as its rights!"

The Blackwater, County Kerry.

This is a good, little salmon river, for which at high and coloured water the three following flies will be found the best.
No. 1. A blue and blood-red hackle over a golden olive body, gold tinsel, and orange silk tag. Wings, mallard, golden pheasant neck-feather, blue macaw and red parrot; black head. Hook, No. 7 and 8.

No. 2. Two blue hackles over a fiery-brown body; wings, &c., as before.

No. 3. Golden brown body, same coloured hackle and gold tinsel; tag, gold-coloured fur and a little of the same under the shoulder; wings, &c., as before.

For the same river at settled water; orange body, black hackle, gold twist and mallard wings; also, blue silk body, blue hackle, silver twist, and wings as before. Bodies of all shades of grey fur and hackles, with tags at tail and shoulder of yellow, red, fiery-brown, gold colour, and golden olive mohair, ribbed with silver twist, and having plain brown mallard tails and wings, will prove good killers. Hook, No. 8 and 9.

Flies for Waterville, County Kerry.

No. 1. Body, fiery-brown mohair, same coloured hackle, gold twist, and a small claret hackle round the shoulder. Wings, mallard, fibres of blue macaw, and golden pheasant neck-feathers neatly
mixed; tail, a couple of fibres of mallard, red ibis, blue macaw and golden pheasant neck-feathers; black ostrich head. Hook, No. 7 and 8.

No. 2. Body, dun fur, ribbed with silver twist and blue dun hackle; bright yellow tag, and a little yellow mohair at the shoulder. Wings, head, tail, and hooks as before.

No. 3. Body, claret pig's hair, ribbed with gold tinsel and black hackle; yellow tag at tail, and a roll of black ostrich harl above it. Wings, head, tail, and hooks as before.

I recommend Waterville, which is about thirty-six miles beyond Killarney to salmon and sea-trout fishers. Mr. Butler, the exceedingly liberal proprietor of the waters there, will allow any gentleman to fish them. The large Waterville lake teems with the finest sea-trout in the kingdom. I regret to be informed by eye-witnesses, that there are individuals, who abuse Mr. Butler's permission to fairly fly-fish his salmon river, by pretending they are doing so, whilst at the same time they are carrying into effect the unsportsmanlike and disreputable practice of "stroke-hauling," that is, sinking a large hook, sometimes a double or treble one, hauling it in at quick jerks, and so hooking foul the fish the hook comes in contact with. Many a fish is hooked and lacerated with-
out being caught; and I hope that Mr. Butler, being now publicly advised of the most objectionable practice, will peremptorily order its discontinuance.

Standard Welsh-Flies.

The reader will perceive on the 5th Plate, a representation of a model Welsh-fly, and at page 94-5. he will read a description of it. The seven following flies are standard ones for the salmon rivers of the principality.

No. 1. Body, dingy yellow mohair, with same coloured very full hackle, and ribbed with gold tinsel; wings, two back or bittern neck-feathers, tied on Tweed fashion. Hook, No. 5. The hackles of Welsh-flies are generally very long in the fibre, and are wound closely, without clipping their points, from almost the bend of the hook upwards to the wings.

No. 3. Body, dingy orange mohair, furnace hackle, gold tinsel, and full mallard wings. Hook, No. 5 6 and 7.

No. 4. Body, fiery-brown mohair, same coloured hackle and gold tinsel; wings, light brown
turkey tail-feather, set on Tweed fashion, and hooks as before.

No. 5. Body, dingy yellow mohair, over which strike closely a grizzled blue dun hackle of very long fibres. Wings, cinnamon brown turkey tail-feather; head same as body; tail, a mixture of red macaw and teal feathers. Hook, No. 5.

No. 7. Body, a mixture of grey, blue, and yellow mohair, with a long-fibred darkish blue dun hackle, struck closely from the tail up to the wings, which are to be of light brown spotted turkey tail-feather; tail, a few short bustard feather fibres. Hook, No. 6 and 7.

Local Welsh Flies.

No. 1. Body, orange pig's hair; legs, two yellow-dun hackles, struck up from the tail to the shoulder. Wings, light brown-yellow turkey tail-feather; tail, a bit of red ibis, and a small widow's crest-feather; head, orange-coloured wool. Hook, No. 3. This fly is only fit for full water, clearing after a flood.
No. 2. Body, turbid orange wool; legs, a dun hackle, dyed the colour of the body. Wings, a light, spotted, turkey tail-feather, dyed yellow; tail, red toucan, and brown turkey tail-feather. Hook, No. 5.

No. 3. Body, sooty yellow wool; legs, a dun hackle dyed brown. Wings, a spotted cinnamon-coloured tail-feather; tag and tail, red worsted. Hook, as before.

No. 4. Body, dark orange worsted, or pig's wool; legs, two dark-dun hackles rolled up from tail to shoulder, round which a yellow-green hackle. Wings, dark-brown spotted turkey tail-feather; tail, neck-feather of the golden pheasant drawn in short. Hook, as before.

No. 5. Body, dark orange wool ribbed with silver twist; legs, two grizzled-dun hackles from tail to shoulder. Wings, two body-feathers of the bittern; head, green peacock sword-feather, one or two fibres of which are to be left hanging from the butt of the wings; tail, short red and blue macaw feathers. Hook, No. 6.

No. 6. Body, yellow-green wool, ribbed with blue mohair; legs, a long, light-dun hackle from tail to shoulder. Wings, as before; tail, blue wool. Hook, No. 7.

No. 7. Body, fiery-brown wool; legs, dun
hackle from tail to shoulder. Wings, small, spotted bittern feather; tail, red worsted. Hook, No. 8. and 9. This is the smallest sized fly that need be used for salmon in Wales. It is a low water fly.

The four following flies are great favourites in Wales, and are known there by the name of "fern-flies."

No. 1. Body, yellow worsted mixed with a small quantity of light buff; legs, dun cock's hackle. Wings, pea-hen's back or rump-feather, dyed yellow; tail, crimson worsted. Hook, No. 5.

No. 2. Body, dark buff, or salmon-coloured wool; legs, dun hackle dyed olive. Wings, two bittern feathers dyed yellow; tail, mallard, dyed yellow. Hook, as before.

No. 3. Body, deep yellow mixed with a little orange worsted; legs, dun hackle, dyed yellow; tail, grey and yellow dyed mallard-feather mixed. Wings and hook, as before.

No. 4. Body and legs a sooty yellow; tail, widow's crest-feather. Wings, as before, and hook, No. 6.

The feathers for the wings of fern-flies are dyed thus: — Dissolve in a pint of boiling water an oz. of alum. Steep in it the feathers for three or
four hours. Boil in the same quantity of soft water for half an hour half an oz. of fustic, and the same quantity of turmeric. Remove the feathers from the alum water and immerse them in the yellow dye, and they will soon assume the required colour.

Large Palmers for Welsh Salmon.

No. 1. Body, very long of orange wool ribbed with gold tinsel, orange tail; two red-dun hackles struck from the tail to the centre of the body, and two dark blue-dun hackles from that up to the head. The whole to be dressed on two hooks whipped tightly together, back to back, the barb and bend of the upper hook to project from the centre of the body of the palmer. The hooks to be two number fives or sixes. This palmer should be used in full water after a flood.

No. 2. Body, black ostrich harl and black hackles from tail to head. Hooks, as before. Fit for pools and clear water.

No. 3. Body, light blue dun wool over which hackles of the same colour. Hooks, No. 7. Good in clear water towards evening.

The above local Welsh flies and palmers are after patterns sent me by Mr. W. Flinn, fishing-
tackle maker of Worcester. He has much experience of the rivers of South Wales, and the above are the flies he successfully uses.

A Batch of General Salmon Flies.

No. 1. Body, orange floss-silk, tipped with gold tinsel, and small topping for tail; claret hackle and gold tinsel over body; blue jay at shoulder, and full brown mallard wings; head, black ostrich, and blue and yellow macaw feelers. Hook, No. 6 and 7. This is a celebrated fly in the north of Ireland, and is called "The old Irish gentleman."

No. 2. Body, claret mohair, over which gold tinsel and claret hackle; brown tag, and small topping for tail; wings, brown turkey tail-feather with two toppings in the centre. Head, and hooks, as before.

No. 3. Body, orange floss silk, orange hackle, gold tinsel, and topping for tail, blue jay hackle and two kingfisher's feathers at shoulder. Wings, toppings, mixed with brown mallard, teal, guinea-hen, and golden pheasant neck and tail-feathers; black ostrich head, and blue and yellow macaw feelers. Hook, No. 6.

No. 4. Body, yellow floss silk, over which silver twist and black hackle; dark blue tag, and topping
for tail. Wings, brown mallard, golden pheasant neck and yellow rump-feathers, silver pheasant tail, guinea-hen, and teal feathers; blue jay and kingfisher at the shoulder, black head and macaw feelers. Hook, No. 6.

No. 5. Body, gold or orange colour pig's hair, hackle of the same colour, gold tinsel, black ostrich tag, tipped with silver; tail, a topping. Wings, two toppings, and a rump-feather of the golden pheasant, with a neck-feather hackle-wise at shoulder, over a joint of brown red pig's hair; macaw feelers, and yellow or orange head. Hook, No. 5 and 6.

No. 6. Body, half yellow, half puce floss silk, black ostrich tag and red floss silk, tipped with gold tinsel, and topping for tail; over body, silver tinsel and jay's hackle struck up with it to the shoulder. Wings, brown mallard, guinea-hen, teal, golden pheasant neck-feather, blue peacock fibres, and a topping over all; macaw feelers, and black ostrich head. Hook, No. 6 and 7.

I recommend this as an especially good general fly for water of moderate depth and brightness.

No. 7. Body, to commence with two or three turns of puce, followed up by turns of blue, orange, red and purple floss silk, over which, from tail to shoulder, blue hackle and silver tinsel and
gold twist, small guinea-hen feather round the shoulder, orange head, and topping for tail. Wings, two golden pheasant toppings and small neck-feather, with a few fibres of bustard and golden pheasant tail-feathers; the usual macaw feelers. Hook, No. 7 and 8.

No. 8. Body, black mohair, over which silver tinsel, gold twist and black hackle; peacock harl and orange tags, and toppings for tail. Wings, brown turkey and golden pheasant tail-feathers, mixed with guinea-hen, teal, and brown mallard; blue macaw feelers, and dark blue head. Hook, No. 8.

No. 9. Body, fiery-brown pig's hair, ribbed with gold tinsel, and having a grouse hackle round the shoulder; tail, yellow mohair picked out, and brown mallard wings. Hook, No. 7.

The last seven flies described, are patterns sent me by the gentleman mentioned in describing the two little flies which contrast so well with the large Shannon fly on Plate II. He assures me that he is successful everywhere with them.

The Three Graces.

Aglaia. — Body, all of silver tinsel, ribbed with gold twist; black ostrich tag, tipped with
THE THREE GRACES.

gold; tail, a small topping and a few fibres of the wood-duck's feather; black hackle, thin and short over body, teal hackle at the shoulder. Wings, two toppings, bustard, cream-coloured turkey and wood-duck feathers, and black ostrich head. Hook, No. 7. A famous summer's evening fly.

Thalia. — Body, orange floss silk, orange hackle, gold tinsel, cock of the rock's hackle under shoulder, and over shoulder blue jay hackle. Wings, two toppings, brown Argus pheasant tail-feather, bustard, and blue kingfisher feather at each side of the wings; black head, and blue and yellow macaw feelers.

Euphrosyne. — Body, bronze peacock harl, gold tinsel and a short-fibred claret hackle or hackles to be wound with close regularity from the tail to the wings; orange tag, gold tip, tail, two toppings. Wings, long, delicate and super-incumbent, and of brown Argus pheasant tail-feather, golden pheasant tail and long-topping; at each side the wings, short pieces of silver pheasant tail-feather; head, green peacock's harl.

These are the three last patterns of Salmon-flies I shall describe. Their beauty cannot be surpassed. The first is an exquisite imitation of a silver-hued moth, spangled with gold on the body and with various colours on the wings.
Night-time is the season for its conquests. The two last flies must be tied on very long-shanked hooks, fine in the wire, and small in the bend, like that of the Erin-go-Bragh figured at the bottom of the frontispiece. The graceful figures of these two flies, decked in most tasteful costume, cannot fail to call up to them the homage of the most fastidious salmon-connoisseurs. Their attractions are peculiarly persuasive when viewed through the medium of water somewhat deep and opaque.

Standard Sea-Trout Flies.

No. 1. Body, yellow floss silk, gold tinsel, black-red hackle, small topping for tail, blue jay at shoulder, a neatly mixed gaudy wing and black ostrich head. Hook, No. 8 9 and 10.

No. 2. Body, blue floss silk, blue hackle and silver tinsel, blue jay at the shoulder. Wings, head, tail and hooks as before.

No. 3. Body, black mohair, black hackle, silver tinsel, yellow tag, small topping for tail, head yellow mohair picked out to hang under the shoulder. Wings, two little toppings, surrounded with teal and guinea-hen feathers. Hook, No. 8 and 9.

There cannot be a better general sea-trout fly
than this. Salmon, at low water, will take it well.

No. 4. Body, peacock harl, gold tinsel, amber hackle, a small topping for tail; mallard wing. Hook, No. 9 and 10.

The best sea, white trout, or sewin flies for the Kerry rivers and lakes, and, generally speaking, for all others, are those with dark and bright fiery-brown bodies, blue and fiery-brown hackles over bodies, gold-coloured necks, and plain wings of brown mallard, turkey, grouse and landrail’s wing-feather. For the wings of small flies the two last-mentioned feathers are the best.

End of Part the First.
PART THE SECOND.

THE NATURAL HISTORY OF SALMON.

CHAPTER I.

ALL THE KNOWN HISTORY AND HABITS OF SALMON MINUTELY WRITTEN AND DESCRIBED.

The natural history of salmon has been frequently written; still, there exists, as far as my reading extends, no history of the fish sufficiently accurate and copious at the same time. I assert this unhesitatingly, and without rendering myself liable to any charge of self-conceit. The history and habits of the salmon written in detail in the following pages are not mine. The writing is mine, and very little more. The real author—the communicator of the chief facts enumerated—is Mr. Andrew Young of Invershin, manager of the Duke of Sutherland's northern salmon-rivers. He has communicated them to me orally and by writing, and I am nothing more than the public
narrator of them, or the narrator of them to the public. I can, therefore, without on my own part infringing the rules of modesty, pass judgment on the abilities of Mr. Young and the value of his facts, exactly in the way a translator is permitted to speak of an original author whose works he is translating.

Who is Mr. Young? That gentleman, some seven hundred miles far away from me at the time I write this, will pardon me if I tell the world who and what he is.

He has been connected with salmon fishing for upwards of thirty-five years; 1st. on the river Tay, and then on the justly famous river Shin, and other rivers in Sutherlandshire. "I have been," he says in a private letter to me, dated Dec. 17, 1849, and which, at the risk of offending him, I make in part public, "experimenting on salmon for upwards of 30 years. Few, I believe, if any, have paid the attention to the habits of salmon I have done. To enumerate all the experiments I have made would fill volumes. On this point I must abridge. In 1834, and for a number of years following, we [I suppose Mr. Young and his assistants] marked spawned fish, for the purpose of settling the question, denied by many, of the return of salmon to their
native rivers. This we did satisfactorily. We, in 1835, marked smolts to ascertain and set at rest the following point denied by many, viz.; that the smolts returned grisle the same year they first went from the rivers to the sea in the smolt state. The experiments proved this also; and specimens of the grisle that we marked when smolts, and which returned grisle from the sea to fresh water the year they were marked, may be now seen in the Museum of the Royal Society of Edinburgh. We continued these markings many years, invariably with similar results, and at the same time, continuously during three years, we carefully watched the spawning operations, and spawning beds in all their stages, and were fully convinced at last that the fry remained in the rivers one whole year, and no longer, after having been hatched. However, though I was fully convinced in the case, the public were not, and still hung to the old theory that they were fry and smolts the same year, and that their migration to the sea took place shortly after they were hatched. To make assurance doubly sure, we, in 1841, erected a chain of four artificial breeding ponds by the river Shin [I have seen the remains of them. They were in the Shin, close by its rocky left-hand bank.], about fifty yards above
Shin-bridge, where we hatched the fry to the state you have seen them preserved here. We continued this process for some years, and always found the same result.* The ponds were visited and examined by many gentlemen and naturalists, and amongst others by Mr. Travers Twiss, one of the professors of the University of Oxford, through whom I presented, in June, 1834, to the Ashmolean Museum, a set of ova and fry up to the smolt state."

Mr. Young, to my own knowledge, has done more than this. In 1848 he wrote, in the John o' Groat's Journal, a series of essays on the salmon, which I caused to be re-published in a celebrated weekly London sporting paper.† In the same year Mr. Young collected these essays, and published them at Wick, in pamphlet form, with the title, "The Natural History and Habits of the Salmon," &c. Now, it will be asked, why he should have thought it necessary to dictate to me the substance of another history on the self-same subject? He must himself answer the

* This result will be stated by and by in our history of the Salmon, and in our explanation of the plates, representing Salmon Fry in several stages of their existence.
† Bell's Life in London.
question.* If I were to answer it for him, I should say, it was because he did not consider his pamphlet copious enough; that it lacked detail and arrangement; that it contained extraneous

"My dear Sir,

"I have received yours of the 8th instant. [A note of mine requesting Mr. Young to state why he thought a new natural history of Salmon still necessary.]

"The reason why we consider it necessary to write the Natural History of the Salmon is exactly, because it has never been fully given to the public, although Mr. Shaw and I have written several pamphlets on the subject. They were written, at least mine, for the purpose of preparing the public for a much fuller account of the history and habits of Salmon than they contained. I consider we are now endeavouring to give that fuller account to the public, and I hope it will prove worthy of their perusal. As we could not give it without the knowledge derived from frequent experiments made for several successive years, we have spared neither time, pains, nor labour in making them, and we show ourselves now most willing to communicate to all who take an interest in the matter, the secrets we have fished out from the depths of the sea, and the pools and rapids of rivers. That is our sole design in writing the present history, and I, having fallen in with 'Ephemera,' whose considered that between us we should be able to give to the public the fuller information still so much required on the subject.

"I am, my dear Sir,

"Yours truly,

"A. Young."

"To Ephemera, &c."
matter: in fine, that he thought two heads better than one.

I will now state how I made the advantageous acquaintance of Mr. Young. In 1847 I published "A Handbook of Angling," in which I inserted a brief sketch of the natural history of salmon, following Mr. Shaw's theory, that the fry of salmon do not arrive at the smolt state until they are two years old; that is, that they do not assume the silvery, or migratory coat, until they have attained the age mentioned, and do not go to the sea before. In a few weeks after the publication of the "Handbook," I went to Ireland, on a fly-fishing excursion, and whilst angling for trout in some of the tributaries of salmon-rivers, I caught a great many salmon-fry, marked with transverse bars, ("parrs" Mr. Shaw and others erroneously call them,) and also a great many smolts, or salmon-fry in their silver-hued migratory costume. This took place between the middle of April and the middle of May. I examined these little fish, and it struck me, I cannot explain fully why, that Mr. Shaw had exaggerated their ages. I could not believe that any of the fry marked with transverse bars exceeded in age twelve months, nor could I reconcile with my own observation that the smolts I
caught were two years old, or thereabouts. I doubted, therefore, the accuracy of Mr. Shaw's "Experimental Observations on the Development and Growth of Salmon-Fry, from the Exclusion of the Ova to the Age of Two Years."

Immediately after my return to London I wrote to Mr. Young, of whose reputation I had in part heard, and I expressed to him my doubts as to the slow growth of salmon-fry as maintained by Mr. Shaw. Mr. Young promptly answered my letter, stating that he regretted to differ from Mr. Shaw; in fact, that the latter gentleman's calculations were wrong by one whole year; that there were no salmon-fry to be found in salmon rivers with transverse bars at the age of eighteen months (see Mr. Shaw's plates of young salmon); that they became smolts at the age of twelve months, and then migrated sea-wards, and not at the age of twenty-four months, according to Mr. Shaw's experimental theory. A weekly correspondence almost, since 1847 up to the present time, has been carried on between Mr. Young and myself, the chief subject of which has been the salmon, and nearly all that pertains to it. Mr. Young, the year before last (1848), invited me to visit him at Invershin, but I was not able to experience his kindness until last year, when I
had the pleasure of passing a month with him on the banks of the Shin. The object of my visit was manifold; to obtain from Mr. Young's own lips his knowledge of the history of salmon, and of its habits; to see his museum; to see how and where he had made his experiments; and, finally, to furbish up my piscatorial practice, getting rusty, I felt, for want of a sufficiently stimulating arena wherein to exercise it. Mr. Young communicated to his Grace the Duke of Sutherland the object of my visit to his princely land and water domains, and the "Good Duke," for which I, with most cordial gratitude, thank him, issued orders that I was to be allowed to circulate freely throughout the length and breadth of more than five-sixths of Sutherlandshire. The result of this gracious permission, and of my friendly visit to Mr. Young, is the preceding and subsequent part of this book.

If in the pages that follow this, the errors of any writer are confuted, I beg, on the part of Mr. Young and of myself, to declare that we are actuated by no other motive than the establishment of truth. With respect to Mr. Shaw, to him, I believe, belongs the merit of originating the artificial breeding of salmon, and if he have erred, he has done much good, by striking out the first
spark to enlighten the paths of subsequent inquirers. He has been the Columbus of the salmon-world to Mr. Young and others, and to my very humble self amongst the number. I wish Mr. Shaw would repeat his experiments, feeding his salmon ponds with water from the Nith, and not with spring or rivulet water as he formerly did. He would then discover the cause of his erroneous calculations—that they were produced by the difference of temperature between the waters of the Nith from which he took the ova, and the waters of the ponds in which they were hatched, and in which his experimental salmon-fry were reared.

Salmon preparing to Spawn.—The male and female salmon appear together on that part of a shallow in which their bed is to be dug, and they remain moving about upon it for a few days before they begin the process of nidification. No precise period can be fixed for their appearance. Salmon spawning-beds are made by the fish in some sandy or gravelly part of the river, generally high up towards its source, and not unfrequently in rivers, and almost rivulets, tributaries to some large river, of course, connected with the sea. Before two salmon, male and female, commence the formation of their nests, they make efforts to
drive away every fish that may come within their vicinity.

The spawning season extends over a period at least of six continuous months. On an average—I am referring to the majority of our great salmon rivers, no matter where situate in the empire—it commences about the middle of September, and ends about the middle of the following March. Perhaps, I should have said, "it would commence about the middle of September," for in some rivers it cannot, except in rare isolated instances commence so early, viz., in those that are netted up to the 14th of that month, and so up to that period have nearly all their early spawners killed.

The first fish that appear on the spawning-beds are grilse, or young salmon of the previous year's incubation, or of the two last months of the year before that; and they are generally the precursors of mature salmon, that is of fish in their third year or upwards. From the middle of September, when grilse and salmon are first observed upon the shallows, or spawning localities, they increase daily in number up to about the first of December. The process of spawning is at its height from the middle of November to the middle of December. The substance of these observations is properly only applicable to those rivers—His Grace the
Duke of Sutherland's for instance in the north of Scotland—wherein the cruives are taken up early in August, and all netting ceases about the middle of that month, and by no means to those impoverished rivers, the renters or proprietors of which, killing the goose with the golden eggs, go on slaughtering pregnant salmon during the whole of the destructive period allowed them by the fatal clauses of Mr. Home Drummond's Act. From the 1st of December to the middle of the following March the number of salmon on the spawning-beds diminishes in about the same proportion that it had increased from the middle of September to the 1st of December. At the end of March scarcely a pair of salmon can be met with performing the functions of procreation.*

* I beg the reader to bear in mind that, if, as asserted in the text, the spawning season extends, more or less actively, from September to March, there must be salmon-fry (the smolts of Mr. Young) of twelve months old in the corresponding six months of each successive year, and there must be salmon-fry marked with the transverse bars for about eight months in the year. What then becomes of Mr. Shaw's assertion that,—"Immediately after the migration of the two years-old parr (which the latter always affect [qy. effect?] about the beginning of May, under the name of salmon-fry, there is no other parr, besides such as have been recently hatched, to be found in the river, save those which correspond with this specimen [a salmon-fry
It may be necessary to mention here, though in doing so, I partly repeat myself, that spawning with transverse bars, alleged by Mr. Shaw to be twelve months old], which is the pink of the river Hodder, alluded to by Mr. Yarrell.” Now, if ova deposited and impregnated in the middle of September be hatched in ninety days, the average time at this season of the year, as stated by Mr. Young, they will be about four and a half months old in the following May, and consequently can neither be Mr. Shaw’s parr “recently hatched,” nor his twelve months old specimen, nor Mr. Yarrell’s “pink.” Mr. Young says some late spawners deposit their ova in March. These ova will be hatched by the following 1st of June at the latest, the water being at high temperature, generally speaking in April and May. The fry produced by these ova will be only eleven months old the following May. We will now take ova deposited and impregnated on the 1st December, and allow them the longest period, viz. 140 days, for incubation. They will be fish-fœtus about the middle of April, and of course, twelve months old at the same period of the following year. Now take the fry of ova deposited in the early part of November and hatched in the middle of March, they will be twelve months old in the corresponding period of the following year, and two and a half months or more in the May of the year in which it is hatched. Calculate in like manner the produce of ova deposited in the months of January and February, and you will find that you will have embryo fish, no more than a day or so old, in the middle of April and the beginning of May each succeeding year, which can neither be Mr. Shaw’s “parr,” nor Mr. Yarrell’s “pink.” Mr. Young states that the “throng” time of spawning is between the middle of November and the middle of December. The “throng” time of the migration of
invariably commences— I mean the spawning season—at the heads of rivers, and one can see that the first pair spawning are fish that by escaping the nets and cruives have made their way up even before the fishing operations are over. Many of these fish are of the category of those, which on Sundays when the cruives are open and netting has for the time ceased, have entered the rivers and ascended safely to the shallows. They are autumnal spawners, the best and most prolific of all, and they would be by far more numerous if netting ceased some time in August. Why they are the most prolific I will explain. It is in a word, because their spawning operations are over before the setting in of winter storms, and their attendant heavy rains and floods. Before the period of the inundation of rivers, the salmon-beds smolts must be then between the middle of April and the middle of May, not in the last fortnight of the April and the first fortnight of the May that succeed the “throng” time of spawning, but, according to Mr. Young between the April and May of the first year after that, and according to Mr. Shaw, not until the second year after. It is not necessary for me to say that I am convinced of the accuracy of Mr. Young’s experiments and of his statements, the result of them, and of very long and clear-headed observation. Salmon-fry and smolts are found in salmon rivers nearly all the year round. Some of the fry represented in the plates were taken from the Shin in November.
or nests are completely filled in and levelled, which is of the greatest importance to the preservation of the ova deposited underneath, as the fiercest currents of water will pass over the completed beds innocuously. These observations will be fully comprehended by and by, when I come to describe the process of nidification, or bed or nest-making of salmon.

Having touched upon the beneficial importance of early spawning, I will mention some of the evil effects of late spawning. When fish spawn late, that is, in the winter months, or in the rainy, snowy, or frosty season, they are in the first place almost certain to have their operations disturbed or destroyed by storms or floods; their beds and ova swept away during the progress of the execution of the former, and the deposition of the latter. In the second place, dry, wintry weather, which at least in the North is invariably frosty, is almost as equally injurious to productive spawning as wet weather, because during its prevalence, the waters of the shallows are frozen up. Salmon cannot enter them, and as they are the only spots appropriate for spawning, that operation is completely impeded, or else the fish are forced to select spots unfit for the purposes of incubation. When floods prevent salmon from depositing their
ova in the shallows, they have recourse to the inundated banks or sides of rivers, and deposit their ova there. The consequence is certain destruction of the deposited eggs, for long before they can be incubated or hatched, the waters subside, and the salmon-beds with their contents are left high and dry upon shore.*

Before salmon commence the preparation of their beds, I think, if not impeded, they will not stop until they have arrived at the spot, or at least very near the spot, at which they them-

* I call the attention of the Legislature to the facts and inductions embodied in the two preceding paragraphs. Can any thing be more evident than that early spawning is necessary for the successful propagation of salmon? Is not the converse of the proposition equally patent, that late spawning is highly injurious to the breeding of that most valuable fish? Why then, with such results before us, should we (be allowed to) oppose natural laws in such a way as to change the regular and appointed time for salmon-breeding? Not even the most sceptical of the accuracy of this natural history and habits of salmon can deny the almost next to uselessness of late breeders, or fail to acknowledge that it is the early breeders that produce a numerous progeny — a progeny likely to thrive, and, if permitted, become in their turns early breeders. If the present system continue, if the Legislature will allow salmon-fishing to extend almost to the winter months, the consequence will be salmonless rivers. And when the evil is done, restocking the rivers will be the only remedy that can be resorted to — a costly remedy both in time, trouble, and expense.
selves first received life. This opinion I am able to illustrate by, what appears to me, exceedingly interesting and conclusive facts.

Loch Shin, a piece of water, about twenty-one miles by fourteen, situate in the heart of the Sutherland mountains, is the immediate feeder of the river Shin, noted for its salmon fecundity. The Loch itself has four feeders, middling sized rivers, viz. the Terry, Fiack, Garvie, and Curry, in which, previously to the year 1836, not a salmon was ever seen, though many were in the habit of entering the loch or lake.* In the year mentioned, at the request of his Grace of Sutherland, and Mr. Loch, M.P., salmon were caught in the

* The following is interesting to the numerous fraternity of salmon-fishers. Although salmon were frequently seen going into Loch Shin in great numbers and leaping in its waters, not one had been caught either by fly-fishing or trolling in the Loch until last year (1849). His Grace, the Duke of Argyle, trolling in the Loch last season for the *salmo ferox*, hooked and killed a salmon, and therefore was the first to break the charm that had from time immemorial protected the *salmo-salar* sojourners in this large lake. It may be reasonably inferred from the above fact that as spawning salmon increase in the four rivers that feed the Loch, salmon and salmon-angling will increase in it also, so that hereafter it may become as famous for salmon-fishing with rod and line as it is now for angling for the *salmo ferox*, and various sorts of salmonidæ.
river Shin, shortly before the spawning season, and conveyed to the four rivers above-named, amongst which they were distributed in due proportions. Mr. Young was the managing director on the occasion. In the wonted season all the fish spawned, each in its respective river. Now, mark one of the consequences: salmon at present, and ever since, come regularly to spawn, traversing the lake to do so, in all these heretofore salmonless rivers. Nay more, the fish hatched in the Terry, at least those that survive long enough, return to the Terry; and the young of the other three rivers return from the sea to them, each grilse or salmon entering never-failingly the stream that gave it birth. What wonderful and unerring instinct! One might think that they would remain in the river Shin, and spawn where their ancestors had spawned; but no, they leave their own natal shallows, pass down the lake, through the river Shin, along the kyle of Sunderland, to the sea; and there having become adolescent, they retrace their route, and, after necessary rests on their long voyage, very frequently on the spots of their parents' nativity, they revisit, for the first time, the scenes of their birth and infancy. Revisit them—for what? Being nubile, to perform the nuptial rights, which they do where their
forefathers begat them, and so they go on increasing and multiplying in colonies heretofore tenantless of salmon, ever since volcanic action called from the "vasty deep," the mountains and rivers of northern Caledonia!

Immediate Spawning Operations. — The spawning-bed, which may be called a continuation of nests, is never fashioned transversely, or across the water current, but straightly against it. The way the bed is formed has never been accurately described. Some have affirmed that the male fish is the sole architect; others, that the female does all the work; others again, that the tail* is the only delv-

* By comparing the text with the following extract from Mr. Shaw's "Experimental Observations," &c. (p. 19.), the reader will see how widely he and Mr. Young differ on one of the most interesting habits of salmon. Mr. Shaw says, — "It has been generally supposed that the male salmon, during the spawning season, assists the female in forming the spawning-bed. This idea is, I think, founded in error, as, during the whole course of my experience, I have never been able to detect the male taking any share whatever in the more laborious portion of these parental duties. The only part he performs, beyond the mere sexual function, consists in the unwearied vigilance which he exhibits in protecting the spawning-bed from the intrusion of rival males, all of which he assiduously endeavours to expel. The female, regardless of the occasional absence of the male during these contests, and probably satisfied with the presence of the male parrs, proceeds with her operations
ing "implement employed," and others write that the bed-trenches are dug across the stream. These
by throwing herself at intervals of a few minutes upon her side, and while in that position, by the rapid action of the tail [the emphatic italics are Mr. Shaw's], she digs a receptacle in the ground for her ova, a portion of which she deposits, and, again, turning upon her side, she covers it up by a renewed action of the tail,—thus alternately digging, depositing, and covering the ova, until the process is completed by the laying of the whole mass, an operation which generally occupies three or four days. In the course of these experiments, it has been ascertained that the milt of a single male parr, whose entire weight may not exceed one and a half ounce, is capable, when confined in a small stream, of effectually impregnating all the ova of a very large female salmon." Not satisfied with the assertions contained in the above extract, Mr. Shaw append a note to it, in which he puts forth one fact with great positiveness. "I am aware," he says, "it has been a matter of dispute amongst observers as to which of the two extremities of the fish is employed in the formation of the spawning-bed. However, from late opportunities of observation, which rarely occur, owing to the turbid state of the river in the spawning season, I am now satisfied that it is by the action of the caudal extremity alone that the gravel is removed." Salmon rivers are by no means always in a "turbid state" during spawning time. They are frequently quite limpid then, in the fine weather of September, or in the clear frosty weather of October, November, or December. Mr. Young has over and over again seen salmon excavating, in the way described in the text, not only in limpid water, but in water so shallow that the dorsal fins of the fish could be seen at the surface. No turbidness of water, there-
people, they must pardon my telling them so, are feather-bed naturalists. I have already shown the direction of the beds. It corresponds with the run of the river. A salmon-bed is constructed thus: the fish having paired, chosen their ground for bed-making, and being ready to lay in, they drop down the stream a little, and then returning with velocity towards the spot selected, they dart their heads into the gravel, burrowing with their snouts into it. This burrowing action, assisted by the powers of the fins, is performed with great force, and the water's current aiding, the upper part or roof of the excavation is removed. The burrowing process is continued until a first nest is dug sufficiently capacious for a first deposition of ova. Then the female enters this first hollowed link of the bed, and deposits therein a portion of her ova. That done, she retires down stream, and the male instantly takes her place, and pouring, by emission, a certain quantity of milt over the deposited ova, impregnates them. After this the fish commence a second excavation, immediately above the first, and in a straight line with it. In making the excavations they relieve fore, could have prevented him from observing with the most minute accuracy.
one another. When one fish grows tired of its work it drops down stream until it is refreshed, and then, with renovated powers, resumes its labours, relieving at the same time its partner. The partner acts in the same spirit, and so their labour progresses by alternate exertion. The second bed completed, the female enters it as she did the first, again depositing a portion of ova, and drops a little down stream. The male forthwith enters the excavation, and impregnates the ova in it. The ova in the first part of the bed are covered by the sand and gravel dug from the second being carried into it, chiefly by the action of the current. The excavating process just described is continued until the female has no more ova to deposit. The last deposition of ova is covered in by the action of the fish and water breaking down some of the gravel bank above and over the nest. Thus is formed a complete spawning bed—not at once, not by a single effort, but piecemeal, and at several intervals of greater or less duration, according to the age and size of the fish, and quantity of ova and milt to be deposited and emitted. A female salmon in its third year has a larger quantity of ova to deposit than a female grilse, or young salmon in its second year; and it may be taken for granted, that the older
and larger either fish — male or female — is, the greater the quantity of ova to be deposited, and of milt to be emitted. In consequence, the time occupied in deposition chiefly depends upon the size and fecundity of the female fish. The average time is from five to ten days. It would be more correct to say the mean time lies betwixt.

When the spawning operations — I am describing those of a single pair of salmon — are terminated, the female fish, with instinctive view to repose and convalescence, falls back into some pool below the spawning-bed just completed, and sown with salmon-seed. The male frequently follows her example, sometimes from two motives: 1st, to consort with another female, if he have any milt remaining, and 2ndly, if he have not, for the purpose of recovering from the debilitating effects of spawning. A male salmon may impregnate the ova of one or more salmon. A mature male salmon has milt enough to impregnate the ova of several grilse, or young salmon; and he will continue the operation of impregnation as long as the seminal fluid lasts. If, in the first instance, a female choose a mate unable to fecundate all her ova, she will, when his milt is exhausted, go in search of another, and will be a bigamist or polygamist, as long as nature, or (as a phrenologist
would say) philo-progenitiveness, compels her to be so.* The length of a spawning-bed depends

* This could never happen if Mr. Shaw’s most extraordinary statement were true, viz. “That the milt of a single male parr [male, salmon-fry], whose entire weight may not exceed one and a half-ounce, is capable, when confined in a small stream, of effectually impregnating all the ova of a very large female salmon.” Let me make a calculation. The ova in mass of a very large salmon will weigh on a very low average one pound and a half; and the ova separated, as they are by the act of deposition, will number many thousands. Supposing a male salmon-fry to have milt in proportion to age and size — that a tenth part (I am allowing Mr. Shaw’s little fish the widest, indeed improbable, latitude) of its entire weight be milt, then the weight of that of an ounce and a half fish would be 3 dwts. 12 grs. Now, I will ask the question how many ova, each the size of a pea, will 3 dwts. 12 grs. of milt impregnate? Will 72 grs. of milt impregnate several thousand ova, each weighing at the least 5 or 6 grs.? Let us bear in mind that each ovum is distinct from the others, and that every ovum must, to be impregnated, come in contact with milt. There is a wild German theory, that the emission of milt in water, gives it impregnating power, and that all ova in such water will receive from it the vivifying germ. It would seem as if Mr. Shaw inclined to this theory. On this point Mr. Young writes me, (Jan. 26. 1850.) “There is no such thing in existence as a male salmon-fry impregnating the ova of a female salmon of any size. I have seen, perhaps, more salmon on the spawning-beds, and watched their motions, perhaps, more frequently than any man alive, and I must say that I never yet saw the remotest appearance of salmon-fry offering to engage in the operations of spawning.”
upon the quantity of spawn to be deposited therein, and also upon the hardness or softness of the gravel which has to be excavated. The harder the gravel-bed, the shorter the spawning-bed, for then the succession of nests will be more compact, and take up less space, whether in length or width.

A single pair of salmon may be forced to form distinct beds, in different spots. For instance, they have commenced spawning in a stream two feet in depth more or less, and whilst so engaged, the river falls so low, that they cannot continue to work in the first selected spot, for want of water wherein freely to move. When this happens they will drop lower down, or at any rate retire elsewhere, in search of deeper running water. Other causes may induce them, e.g. floods, to have recourse to the formation of a second bed, in a spot suited for it.

Thinking as I do the laying and impregnating, covering up and hatching of salmon-eggs—I use plain words purposely—most interesting points in the history of our River-king, I will not, if I can, leave any thing connected with them untouched. When I do not state facts, I will bring forward deductions and, as it were, circumstantial evidence as convincing to the reasoning mind as fact itself.
WHY SPAWNING-BEDS ARE MADE BIT BY BIT. 181

We have seen that the bed, or trench, in which salmon deposit their spawn, is made bit by bit, and no doubt the inquiring reader will ask why? I have, I hope, a ready and satisfactory answer. The ova of the female salmon are not mature all at the same time. That portion of them next the vent becomes first ripe for deposition, whilst the part in the pectoral regions is immature. In consequence, the ova can be deposited by piecemeal only, and that is one of the chief reasons why the salmon-bed consists of a succession of excavations, the first for the reception of the ova next the vent which are already mature; the second for the ova that will become next the vent and matured in four-and-twenty hours, perhaps, and so on for several days until all the eggs forming what is called the "hard roe" are ripe and fit to be laid. On this point the common hen, and other birds afford an analogy. They deposit their eggs at intervals, as their outward covering or shells harden, that is as they become mature. The analogy extends no further. Birds' eggs are impregnated before they are deposited; salmons' eggs are not; birds' eggs naturally require animal heat to vivify them, salmons' eggs never do. The analogy, therefore, applies only to deposition or laying at intervals.
Let any one examine the roe* of a female salmon about spawning time, and the peas, grains,

* It would be exceedingly difficult to surpass for minuteness and accuracy the description of salmon ova given in Mr. Young's pamphlet, and running as follows: "Ova, when extracted from salmon in spawning time are of a pale or light blue colour, and each is about the size of a small pea. It is composed of a white shell, and light red yolk, and from the crystalline nature of the shell, the inward parts of the egg are quite perceptible,—the shell being full of small pores, scarcely discernible to the naked eye, which, at the time of deposition, fully prepare it for the reception of the milt of the male fish. At this time the yolk of the egg, apparently filling the cavity of the shell, gives it an uniform colour, rendering the external whiteness of the shell scarcely perceptible. After the eggs have lain twenty days in the gravel of the spawning-bed, the yolk approaches more to white, and gives the whole egg a lighter appearance. Now is discernible on one side of the yolk a very small brilliant spot which increases in size, so that by the time the eggs have lain thirty-three days amongst the gravel, it has covered nearly a third part of the yolk. The remaining part approaches more to white, and exhibits the shell more clearly, so that the observer is very much interested in noting the visible alteration. The red spot grows larger daily, and when the eggs have been forty eight days in the gravel, the red spot has covered fully one-half of the yolk, and continues to spread daily more and more. At this period are first seen traces of the embryo fish, under the appearance of an elongated formation of a bluish white, in the yolk of the egg, and of about the thickness of a small thread. The yolk being of a different colour we can clearly see the formation increasing in size daily, and drawing more
or eggs of that part of it nearest to the vent will always be found of larger size, and softer than towards perfection. At the expiration of sixty-three days the formation exhibits at one of its extremities two very small black spots, which afterwards become the eyes of the fish. A decided change now takes place daily; the young fish are getting larger—the black spots are becoming more visible—and the brilliant red, which at one time nearly covered the yolk, drawing closer towards the fish, and leaving the other parts of the egg of a paler appearance, and the fish fully double the thickness that it was on its first appearance: the shell of the egg appears thinner and more transparent, so as to afford full opportunity for minute inspection. At seventy-nine days all the above appearances are more marked, and at ninety-three days the shell of the egg is a good deal distended—the head of the fish larger and better formed—the eyes more visible—and the red of the yolk leaving the back parts and drawing more closely towards the belly of the fish, where it appears to be formed into a conical-looking bag, one end of which is attached to the fish. This appears more clearly after the ova have been deposited 100 days in the gravel, for now we see the embryo fish alive—we see it turning over within the shell of the egg, the shell being very thin and much distended—the red appearance in the yolk is now fully formed into a conical bag attached to the neck and belly of the fish; and as it turns over within the shell we see the little bag turning with it. If a single ovum at this stage is taken with a little water into the hollow of the hand the water’s temperature is augmented, and the movements of the fish so much expedited as to enable us to see all the different parts of the fish-formation, and to afford us time to note all the various alterations, which are now neither few nor small.
those situated higher up in the stomach of the fish. They are softer also, and their outward fila-

At the end of 113 days we find the fish visibly larger—the head better shaped, but large in comparison with other parts of the fish—the conical bag much the same in appearance as before, and the fish more lively, and turning over more frequently in the shell. At 123 days, the fish are still larger, and, from their restlessness and frequent turnings, we now see that their cells have become too small for them, and that they are unwilling to be kept much longer in confinement. They must, however, remain a little longer; for, at the lapse of 133 days, we find the shells of the eggs still unbroken, and the fish in a very restless state, so that, by all appearance, they are not to endure their imprisonment much longer—the conical bag being now red towards the belly, but of a pale colour on the outside—the fish restless, and turning frequently and quickly from one side of the shell to the other, and often appearing to break out of confinement,—the shell being now extremely distended and thin. The time has now arrived when an immediate change from bondage to liberty is eagerly looked for, and the observer feels anxious to continue looking on. The myriads of young fish are continually moving from one side to the other, and the whole spawning-bed is in a state of commotion. Such is their state now, that night only can force the observer to change his place, and, from an anxiety to see the actual movements of development, he leaves the spawning-bed with deep regret. With quick and anxious steps he returns next morning by the dawn, fearing that he has lost the long-looked-for and interesting sight that he expected to see on the previous evening. He watches all that day with the most intense anxiety, still expecting the moment of the grand exhibition, but is yet
ments are thinner and more porous, and thus they are fitter for impregnation—for absorbing the milt of the male as it is poured over them. There is another reason why all the ova cannot be deposited at once. It is forced from the fish, or rather the fish forces it from itself by pressure—by forcing itself into the gravel of the nest. No natural pressure would be sufficient to expel the ova at once. When artificial pressure is employed—I mean manual pressure—the mature ova alone come freely away through the vent; the immature ova remain firmly inclosed within their reticulated tissues or membranes—within, as it were, their net-work fastenings. Although the unripe ova disappointed. This state of matters continues until night-fall, and yet no discernible change. Next morning, however, the ova having been now 135 days deposited, he finds the shells yielding fast to the pressure from within—numbers already burst, numbers bursting, and numbers yet remaining whole. This is the moment of anxiety—the long-looked-for period has now arrived—that of a new generation of fish being launched from a state of thralldom into one of liberty, and into their own natural element. They are now cast abroad amidst the waters with Nature for their only guide; to her provisions their parents have left them 135 days ago, and she has formed them to thrive without nurse or protector, and sent them forth on a hazardous journey provisioned for four or five weeks, and she exhibits them in all their history and habits amongst the strangest and most wonderful works of creation."
should be expressed, they would be useless for production, for their absorbing pores are still closed against the interpenetration of the milt, and consequently in this state impregnation is impossible. The milt of the male, like the ova of the female fish, becomes mature by degrees. When mature they are very easily exuded, for even holding up the fish by the heads will cause limited exudation of milt and ova. The pressure, or weight of the roe above on the roe beneath, is sufficient to produce this partial exudation.

The facts stated in the preceding paragraph are sufficient not only to account for impregnation taking place at intervals, for the impossibility of its being done tout d'un coup, but also for the improbability of impregnation by intermission or coitus either before or at the time of the deposition of ova. Mr. Young dissipated all doubts upon this point by the following experiments: — He took a female salmon, exuded by manipulation a portion of her ova, and having simply done so, he buried it beneath the gravel of one part of an artificial spawning-pond. From the same salmon he exuded another portion of ova, but before he covered it over with the gravel of another portion of his spawning-bed, he impregnated it by pressing milt from the male salmon, and causing it
to come in contact with the last ova deposited. He then covered them in beneath the gravel, and in due time they produced fish. The ova he had covered in without impregnation produced nothing. He repeated the experiment frequently, and always with similar results. He has even taken two female salmon in the act of spawning. The ova of one he impregnated with milt from a male; the ova of the other he did not impregnate. He covered in each under equal conditions, apart in the same spawning-bed. The ova that he had caused to be impregnated were productive; the other proved perfectly barren. This experiment was repeated, and the result was ever the same.

It may be asked, how is it that ova and milt are not swept away by the action of the rapid water in which they are deposited—that they are not swept away in the act of deposition, and before they can be covered in beneath the gravel? It would appear that at the critical moment of deposition the specific gravity of the water is less than that of the mature spawn, for the grains of ova fall to the bottom like grains of shot, and the milt sinks as if it were molten lead. However, we must take into account the effect of the force by which ova and milt are expelled downwards by the spawning fish.
As some of the ova are deposited and impregnated ten or more days sooner than other portions, we must expect to see the incubating progress completed by degrees. Such, in fact, is the case. The evolving of the fish-fœtus is not simultaneous, but gradual, and the infant fry come out from their sand-bed by degrees; at intervals of time corresponding with the intervals that took place during the deposition of the ova. We may, therefore, have young fish from one and the same nest, differing in age from one to ten or fourteen days.

The length of time necessary for the completion of the incubating process varies according to the localities of rivers, because locality produces different temperatures. The temperature of river water is also very sensibly affected—heightened or diminished by the mildness or rigour of the season. In the rivers of the north of Scotland salmon ova are hatched in a period varying in duration from 100 to 140 days.* In conformity

* Mr. Young, in his pamphlet, mentioned at page 160, says,—"The ova, after being deposited, progress very slowly, particularly during the winter season, when the temperature of the water is low; as the length of time between deposition and hatching depends entirely on the heat or cold when the seed is lying amongst the gravel. Ova deposited in September, when the temperature is high, will produce fry in the course of ninety days, whilst those de-
with the habits of oviparous, or egg, or spawn-bearing fish, the parent salmon having deposited their spawn, impregnated it, and covered it in beneath sand and gravel, take no further heed of it, or the fry it produces, except, perchance, hereafter to feed upon them. Water influenced by atmospheric action is the sole incubating agent. I may here observe that after the ova are covered in they are safe from all casualties, on which point more hereafter.

It is during the deposition of ova that they are destroyed, and the greatest destroyers of them are river trout of every species. These salmon-pests are ever on the watch whilst salmon are depositing their ova, and are only kept away from the spawning-beds or trenches by fierce attacks and rapid charges made on them by male and female salmon, both whilst they are preparing to spawn and are, at least one of them, actually engaged in doing so. However, as long as a spawning salmon is in its bed, or nest, laying ova or impregnating it, no trout will venture to come near the excavation. It is only when spawning fish drop down the stream, to gather vigour for posited in November and December, will require something between 100 and 140 days, according as the winter months may be favourable or unfavourable.”
the formation of another nest, or link of the bed above that already excavated, and in which uncovered ova are deposited, that trout dart towards the bed and devour the spawn. The falling down stream for a short time and short distance on the part of salmon is of twofold necessity; first, to gain renewed strength by temporary cessation from labour; and secondly, to get space enough to "take a run," if I may use a jumper's phrase, in order to be able to dart their heads with greater force and effect into the sand and gravel for the formation of a new nest, or link in the bed-trench. The water-ousel is also a sad destroyer of salmon ova. It watches their emission by the spawning salmon, then dives into the water, and descending to the bottom, runs along it to the spawning-bed, out of which it extracts a large quantity of spawn, and would steal more did not the procreating fish see it and drive it away. The spawn once fairly covered in, neither trout, nor water-ousel, nor any other fish or bird can injure it. The supposition that eels burrow into salmon-beds and feed upon the spawn beneath, is erroneous.

It is alleged that alluvial deposits frequently settle upon, and cover the beds, thereby destroying the ova—addling them, in fine, by preventing the chemical action necessary for their incubation
SPOTS IN WHICH SALMON DO NOT BREED. 191

from reaching them. Such occurrences can very rarely, if ever, take place in the spots salmon select for spawning. Those spots are in running waters, where alluvial or other matter brought down by floods cannot well abide. And here let me remark, that salmon never deposit their ova in the sand or gravel of still, smooth, or deep waters. They never breed in lochs or lakes. Nor, a very curious fact, will they spawn in new gravel, nor in gravel that has recently been disturbed by natural, or artificial causes. For instance, a spate or flood shall sweep away a portion of the gravel of a ford, and, for many years, a favourite spawning locality, and by so doing expose a new stratum of gravel. Not only will salmon spawn no longer there, but they will not even rest in their journeys in water having a bottom recently disturbed. A period of about two years must elapse before they will frequent a pool or stream from which gravel has been removed, or to which gravel has been added. So that an excellent spawning-bed, or a famous pool may be annihilated by a furious rush of water.

GROWTH OF SALMON-FRY. — The ova having been hatched, the embryo salmon pierces the sandy and gravelly crust of its nest, and almost instanter assumes a shape somewhat
like a hairless caterpillar, or fringed larva of about three quarters of an inch in length, and tapering from head to tail, having a small sac attached to it, near the throat, about the size of, or rather less than, the original ovum, or single pea or spawn. This sac is the remains of the incubated ovum, or egg, and still, no doubt, contains vitelline, or matter equivalent, for the sustentation of the infant salmon. In connexion with the sac and incipient fish, several conduits, or veins are visible. The sac remains attached to the imperfectly formed fish for about a month, and is detached or consumed by degrees. The gradual detachment may be observed in a specimen of twelve days old, for at that age it will be seen that the sac has visibly decreased in volume, though it has not as yet become undetached, or entirely consumed.

At a month old the fish-fœtus has grown in length, and exhibits to the naked eye plain traces of head, eyes, and tail. Still it is barely more than a pale, misshapen, little longitudinal, half-animate, substance.

At two months old the "fry" measures about one inch and a half, is of nearly perfect piscine formation, having all its fins well defined, and on its coat a slight appearance of transverse bars, commonly and erroneously termed "parr marks."
speaking of the young of salmon I shall invariably use the word "fry," until they have attained the age of twelve months, when I shall call them "smolts." That is the correct nomenclature, as I shall show when I describe the plates representing the young of salmon.

At from three to four months a salmon-fry measures in length from two to two and a half inches—hardly so much. Its head is round; there are pink spots on the body, and the transverse bars are plainly apparent.

At six months the young fish measures from three and a quarter to three and a half inches in length, and the pink spots and transverse bars continue to become more and more distinct.

At eight months the fry is very little longer than it is at six months of age, but it is evidently thicker or more bulky. At nine months even, the increase of growth does not tally with increase of age. No doubt its growth is impeded by (I beg the reader to bear in mind that I am speaking generally, and not of exceptions) its attaining the above age in the winter months when its favourite food, flies, other insects and larvæ cannot be procured in any thing like abundance.

I think it is better to explain here why I say that salmon-fry at eight months old enter, gene-
rally speaking, the winter months. I have already stated that the vast majority of salmon spawn between the middle of November and the middle of December. That interval in Scotland is called the "throng" time of spawning. The ova are hatched in from one hundred to one hundred and forty days. The mean time, then, is one hundred and twenty days or four months, so that as nearly as possible the fish commence their existence about the 1st of March, and will have completed their eighth month by the following November, or the first of the winter months.

Now, a word or two about exceptions, and they are most necessary, as they will explain why salmon-fry and smolts are found in rivers all the year round, and why they are found of different sizes. They will also explain, how it is that after the general migration seawards of smolts in the spring, some are still found in the rivers during the summer, autumn, and winter months. Some salmon spawn in September, and the ova, subjected to water of a higher temperature, at least, for two months, than the ova spawned in December, are hatched in about one hundred days, and produce young about Christmas, or may be, a fortnight earlier. They will be smolts, therefore, in the midst of the following winter, and will migrate at that period. They are the young of
the earlier spawners. I will now come to fish that spawn the latest of all, viz., in the month of March. I should then say the ova of such fish, considering the increasing temperature of the water in March, April, and May, would be fully incubated in ninety days, producing embryo salmon in June. Now, in November when these fry are only six months old, the fry of ova spawned in September, will be eleven months old, and the fry of those spawned at the "throng" season will be about eight months of age. I have taken three spawning periods, early, middle, and late, and given the results. Even between those periods fish spawn, so that there must be in every month of the year, either fry of different sizes, or smolts in their migratory coats preparing for their first descent to the sea, or actually descending thither. I have great hopes that this explanation will prove satisfactory, and remove all scepticism from the minds of those who have paid only cursory attention to the habits of salmon.

A salmon fry at ten months measures about four inches, and the transverse bars begin to disappear, silvery smolt scales by degrees taking their place.

At eleven months its length is four and a half inches, and the bright silvery scales are now seen descending towards the region of the belly.
A salmon-fry at twelve months old is called a "smolt." That is the name by which it is generally known. I deem that its proper name at this age. It is the "last-spring" of the rivers of Herefordshire, and of those of the neighbouring counties — of the Severn and its tributaries. He who calls smolts, or young salmon of twelve months old, "salmon-fry" does not employ a misnomer. If I mistake not, they are so denominated in Ireland until they become salmon peal or grilse. At the above age the young fish measures about five inches, and weighs from three to four ounces, more or less.*

It now—at the age of twelve months—assumes the migratory coat, that is, the silvery one. The transverse bars have disappeared, and so have the pink spots on the sides. The young fish, a part the back, belly, and head, is covered with bright, silvery scales. At the shoulder a few trout-like

* The above descriptions of the growth of salmon-fry are after admeasurements which I made last year of natural specimens preserved in Mr. Young's salmon and salmonidæ museum at Invershin. The reader, after perusing a few pages, will come to other descriptions of young salmon given in explanation of the plates in which they are engraved, and coloured from the egg to the smolt state inclusive. If in the separate descriptions any difference may be found touching the age and size of fish, it will be so small as not in any way to militate against the correctness of our calculations on the growth of salmon-fry.
spots are visible. It is now ready at the first fitting opportunity to commence journeying down river to the sea. In order to induce and enable smolts to do so, it is not necessary that rivers should be flooded, but there must be a sufficient volume of water to carry the migrating fish safely over weirs, shallows, and other impediments. They will not migrate at low water. They generally do so from their native rivers to the sea—tide and time permitting—from the 15th April to the middle of May. At that epoch rivers are generally full, neither flooded nor the reverse. Often-times their migration takes place earlier, and frequently later in the year. Late migration is caused by late spawning, which is the result of a late "close" time, or not allowing salmon to ascend the rivers freely in the early autumn months—in other words, killing the early spawners by means of nets, cruives, and other devices after the month of August has expired.

The reader must have already remarked the very slow growth of salmon-fry. At the end of a year, the whole of it passed in fresh water, the young fish, on an average, weighs little more than four ounces. At that weight, being a smolt, it descends to the sea; and, if it should remain therein, say for eight or nine weeks, and then
return to its natural element, fresh water, it will in all probability, and no specific circumstances preventing, have increased by the end of that time, to the weight of five pounds or more. So, if the growth of salmon during the first year of their existence, is extremely tardy in fresh water, it is, after that age, more than proportionally rapid in salt water. It will be well to bear in mind that the growth of salmon is not always proportioned to the length of time they sojourn at sea. Several circumstances affect their rate of physical development. Amongst others, indeed they are the chief ones, quality and quantity of food found on the salt-water feeding grounds, and hereditary capacity for growth. By "hereditary capacity," I mean that the offspring of large fish have the inherent power of growing, and do grow, to a larger size than the young of small salmon. When I speak of large and small salmon, I refer to fish which eventually become very large, and to fish which, no matter what their age, will always be small; in fact, to giant and dwarf breeds. The growth of salmon-fry is pretty equal in all rivers; and, therefore, smolts, no matter whether they are the produce of large or small salmon, will be found in different rivers, not differing much in size. Such is not the case, however, after the smolt
stage of existence. After that, the growth of the offspring of large-growing salmon, is more rapid than that of the produce of salmon of more diminutive race. The smolts of rivers which produce salmon weighing forty pounds, grow faster in the grilse and salmon state, than the smolts of rivers whose largest fish do not exceed twenty pounds; and faster still than the smolts of rivers, the salmon of which do not average more than ten pounds in weight each. I will suppose these rivers running, at short distances, the one from the other, into the same arm of the sea, as do the Shin, the Oikel, and the Carsely, and that smolts from each descend simultaneously, and take up their quarters on the same feeding grounds. Again, I will suppose them returning in the grilse state, simultaneously to their respective rivers. It will be then found that the grilse of the Shin will be larger and much longer than the grilse of the Oikel, and that the grilse of the Oikel will be larger than the grilse of the Carsely. The reason of this disparity is, the full-grown fish of the Shin are much larger than those of the Oikel, and the parent fish of the latter are somewhat larger than those of the Carsely.

The growth of salmon at sea, and at sea only, after having attained in fresh water the smolt size,
depends on three things: duration of time they remain on their sea feeding-grounds, quality and quantity of food they obtain thereon, and hereditary capacity for growth with apportioned capacity for digestion. The grilse of small salmon, that is, of salmon which never grow beyond a small size, are handsomer, in every way better shaped, and generally of a brighter silvery hue, than the grilse, the produce of larger growing salmon. The grilse of the rivers Carron and Laxford, in Rossshire and Sutherlandshire, are handsome, small-headed, thick and deep and short in the body; the scales of which are small, smooth, and bright, because they are the offspring of small parent salmon: whereas the grilse of the river Shin, in which salmon grow to a very large size, are ill-shaped fish, having large heads, long, thin bodies, large, long fins, and large, rough, and by no means brilliant scales. It requires experience to distinguish a large and well-shaped grilse from a small salmon; indeed grilse are sometimes larger than salmon, the cause whereof I shall state by and by. Very frequently the only distinguishing marks between grilse and salmon are the smaller scales of the former, and longer and larger fins. The fins of a grilse of eight pounds in weight, are
longer and larger than those of a salmon of the same size.

The backs, a great portion of the sides of the gill-cover and of the rays of the fins, of river Shin fish, become nearly black after two or three weeks sojourn in fresh water. The chief cause arises from the colouring matter in that river, which is mainly fed from sources originating in peat soils, or flowing through them. I believe that the waters of all rivers, derivable from sources of the character of those of the Shin, speedily discolour or render dark the bright, silvery scales of fish fresh from the sea; and I believe that all fresh water, no matter how pure its source, has a similar effect, though less in degree. A black, or dark fish, therefore, can never be a fresh-run salmon.

Although a grilse or salmon, fresh run from the sea, is larger and in better condition than it will be after a few weeks' sojourn in fresh water, it is neither so strong nor so active. At all events, its strength and activity are not so enduring. One evident cause of this is, that fresh water hardens and renders tough and stiffly elastic, the fins*.

* Mr. Shaw remarks, — "On the approach of autumn, the whole of the Salmonidae, resident as well as migratory, while in fresh water, acquire a dusky exterior, accompa-
which are soft and feebly pliant in fish fresh from the sea; and the natural consequence is, that aided by those whalebone fin-rays (for to the consistency, or very nearly so, of that substance, fresh water reduces them) they are more capable of putting forth enduring effort and strong and rapid motion, than the obese fresh-run fish, with its limber fins. A man rowing a heavy boat, with short, pliant sculls, will make but slow progress through the water, and will be speedily fatigued; whereas, if he have long, stout oars, they yield little to the water, and, by resistance but slightly elastic to it, the boat is propelled rapidly onwards, and the labour of the rower is considerably lightened. The pliant, almost powerless sculls of the rower, are the soft fins of the fresh-run fish — the stout oars are the fins of the fish that has been a lengthy sojourner in fresh water.

Besides, fresh-run fish that have been recently feeding in rich sub-marine pastures, may not be unaptly compared to horses just taken up from

nied by a considerable increase of mucus or slime. The fins also become more muscular. However, on the return of spring, they resume their wonted beautiful colouring, and the fins, the cartilaginous portions of which are frequently damaged during the winter floods, grow up and acquire their former outline."
luxurious grass or clover-fields, and submitted to dry-feeding. The dry-feeding of salmon are the insects, and larvae, and small fish afforded to them in rivers. The consequence of dry-feeding, good food in small quantities, is the same on quadrupeds and on fish. They severally become less bulky, lose superfluous adipose matter, which is replaced by increase of muscular fibre, and, therefore, though smaller in size, their strength, activity, and power of endurance, are greater. This will explain why the angler finds it frequently more difficult to tire out a small fish than a larger one. For myself, I have had over and over again an easier task in capturing with rod and line a fresh-run salmon, of fifteen pounds in weight, than a grilse half the size, which has been a few weeks training, as it were, on short but strengthening commons in fresh water. At all times a grilse will be found more powerful than a salmon of the same weight, because the fins of grilse are larger in proportion to the size of their bodies than the fins of salmon. Grilse possess, consequently, easier and greater powers of locomotion than salmon. I cannot help fancying that the aldermanic salmon, when put to its speed by the spur of the hook, soon gets "blown," or, as a turfite would say, exhibits symptoms of "distress," whilst its child or brother,
limited to space and wholesome fresh-water diet, has its air passages and muscular tissues unclogged by obesity; and, therefore, when compelled to make abnormal exertions, as it does when hooked by the fly-fisher, it evinces greater power of endurance, or "bottom," as it is termed.

In some rare instances, a grilse, that is, a salmon in its second year, which has been only once to sea, has been known to weigh as much as fourteen pounds; whereas, a salmon, or fish in its third year, or one that has been twice at sea, has been known not to weigh more than six pounds. This great disproportion in weight is chiefly caused by difference in the duration of the time each remains at sea; to disparity in the amount and quality of food, each finds there; and, also, to dissimilarity of race. The one, the grilse, being probably the offspring of giant, the other of small salmon of dwarfish stock. However, difference in the duration of time is alone sufficient to produce inequality in weight. For instance, two smolts from the same spawning-bed, or the produce of ova hatched in the same nest, shall go down to the sea, and resort to the same feeding-grounds. One shall tarry on them, say for two months, and then return to its native stream; the stay of the other on the feeding-grounds, before
its return homewards, shall be four months. The result will be, on a most probable average, that the latter grilse will be double the size of the former. So that *ceteris paribus*, all things besides being equal, the fish that remains longest at sea, must, in all cases be, though not the older, the larger fish.

The question will naturally here arise, why should one fish remain longer on the feeding-grounds than another?* It is a very difficult question, one I do not think that can be very satisfactorily answered. A fish may return from the sea after a sojourn of one month, whilst another may, in some very rare instance, re-

*Mr. Young, in his pamphlet, says,—"We have also marked numbers of spawned salmon, both after their second and third spawning, and have found, at all times, that the length of their sojourn in the sea exactly corresponds with the length of time from the smolt to the grilse, and from the foul grilse to the salmon. The time from the smolts descending to the rivers, until they return to the rivers as grilse, is about eight weeks; and from the time the spawned grilse leave the rivers, until they return as salmon, about eight weeks, and so on throughout all their after stages. We allude here only to the great body of the fish, as there may be numerous exceptions from this general rule, and part of them we have seen, and heard of others, viz., some of them retiring earlier than the time we have stated, and others remaining longer in the sea."
main in salt water several months.* Doing so is exceptional, because as smolts frequently emigrate in shoals, so grilse or salmon very often immigrate in company. Hence there is "a salmon season" and a "grilse season." If fish from the same river and of the same age, continue all along travelling companions, slight will be the difference in their appearance, on their revisiting their haunts of infancy.

It is impossible to state with anything like accuracy, the number of years salmon may live; nor can I devise any sure means of ascertaining such information. Migration to the sea being necessary to the physical development of salmon, it must likewise be necessary for the prolongation of its existence. Salmon, like pike and nearly all the carp tribe, cannot be confined in ponds or stews to discover whether they are long-lived or not. Salmon must have running water over a gravelly bottom to breed in, and sea-water and the various kinds of food it produces, to thrive and grow. If confined to ponds, or even to lakes, salmon would cease to increase and multiply; and their growth would be so much retarded and

* The earliest return recorded by Mr. Young is five weeks and three days, and the latest fourteen weeks.
RAPID GROWTH OF SALMON.

Stunted by deprivation of their natural food; and their natural constitution would be so much impaired, that, in all probability, they would prematurely die from inanition, or from other cause of early decay. If they did not, I conjecture they would become in time a distinct species of fish, or the progenitors of some distinct species; very likely some nondescript sort of fresh-water trout.

Salmon, if they live long, cannot grow in after years as fast as they grew during the earlier period, particularly the grilse stage of their existence, when they frequently increase their size eight-fold in a sea-sojourn of two months. A salmon weighing, when caught in its descent to the sea, 10 lbs. has been retaken on its return after a sojourn of thirty-eight days on its salt-water feeding-ground, and when recaptured it weighed 21½ lbs. This instance of the wonderfully rapid growth of salmon occurred in the Tay near Dunkeld, and was verified by the present Duke of Athol.*

* In a private letter, dated May 11. 1845, his Grace, then Lord Glenlyon, writes, "I have received the ticket [a zinc one that had been attached to a foul fish or "kelt," caught by his Grace as it descended to the sea for the purpose of ascertaining the duration of its sojourn, and its rate of growth in salt-water.] No. 129. from Mr. Wilson, and on referring to my salmon journal, I find that I caught this
salmon increased in this ratio for the space of two seasons we should have them weighing upwards of 80 lbs. each, leviathans assuredly never seen in British waters.

I surmise and calculate on this point thus:—

The growth of salmon after they arrive at a certain age is stationary or nearly so. They merely recover at sea the loss in weight they have sustained in fresh water, and from the wasting effects of spawning. Not reasoning from the extraordinarily rapid growth of the Dunkeld salmon, I will do so from what I consider to be the average rate of increase on the part of fish of large breed. A smolt going down for the first time to the sea weighing 5 oz. will attain that season the weight of 7 lbs., more or less, according to the length of time it remains there, and the quantity and quality of food it consumes. I shall be extenuating if I fix the average increase during the first season at 6 lbs. That weight will be doubled next season; then we shall have a salmon of 12 lbs. in weight, fish as a kelt this year, on the 31st of March, with the rod, about two miles above Dunkeld-bridge, at which time it weighed exactly ten pounds; so that, in the short space of five weeks and two days, it had gained the almost incredible increase of eleven pounds and a quarter; for, when weighed here on its arrival, it was twenty-one pounds and a quarter."
the season after that of 24 lbs., and the season after that of 48 lbs. Here we must stop, for though we sometimes, very rarely assuredly, see salmon weighing 48 lbs., we never see them of double that weight, or of 96 lbs. What is my conclusion from this most fair calculation? Why, that salmon grow very slowly after they have been three seasons at sea, that is, after they have attained their fourth year of existence, and arrived at the weight of 20 lbs. I mean very slowly in comparison with the rapidity of their growth during the second and third years of their age, and I believe that the growth of salmon after the sixth year or fifth visit to the sea is merely nominal, but at the same time I am of opinion that a fish of that age may weigh 40 lbs. Finally, if I were to be shown a Shannon or a Tweed salmon of the weight of 50 lbs., and asked its age, my answer would be ten years, or thereabouts.

Many fables have been seriously related as to the mode and means practised by salmon in leaping, and error has extensively prevailed in reference to the distance they can spring obliquely or perpendicularly beyond the surface of the water. It is a very prevalent opinion that salmon put their tails in their mouths, and by bending themselves like a bow-string to extreme tension, and
suddenly snapping the strain by prompt withdrawal of the tail from the mouth, are jerked upwards, like the dog that was sent sprawling into air by the cow with the "crumpled horns." This is merely laughable; but it is singular that Mr. Scrope, a salmon-fisher, according to his own showing, of more than a quarter of a century's experience, should have stated that on an average salmon jump no further in height than six feet, though he conceives that very large fish, in deep water, could leap much higher. Last year I paid particular attention to those points, and saw that salmon surmounting obstacles in their way as they ascended rivers, sprang straight forwards, head foremost out of the water, no doubt, in a great degree, by means of striking their fins against the water which, with accompanying muscular effort, sent them upwards and forwards. If a salmon means to sink to the bottom it strikes its fins, particularly the dorsal one against the water above. The action of the fins against the resistance offered by the volume of water above tends to force the fish downwards; on the contrary, when the fins are strongly pressed against the volume of water beneath the fish, the tendency of the pressure will be to propel the fish in a vertical direction, or upwards. The class of fish denomi-
nated cetacea, which require to rise frequently to the surface of the water for the purpose of respiration, have tails lying horizontally with the water and not perpendicularly in it. This wise provision of nature is to enable them to rise and sink in the water with greater facility. They have only to strike their flat tails against the waters in the depth of ocean, and straightway they are sent many fathoms upwards; a contrary caudal action will send them down into the deeps again. If the whale were not provided with the flat or horizontal tail it would die of suffocation, as it would then be unable to lift into vital air his huge carcase from the dark unfathomed caves in which he cannot long rest for want of ventilation. The dorsal, pectoral, and ventral fins of salmon are the agents by which they rise and sink in the water. By the agency, in great part, of the caudal fin or tail, they are enabled to propel themselves in any horizontal direction.

A salmon cannot spring far out of the water unless it be deep, but I do not think it need be very deep. In making its spring it first sinks rapidly by upward action of the fins, and then suddenly reversing their action, and finding a point d'apprui in the volume of water under it and bringing the saltant powers of its muscles
Distance Salmon can jump.

Into requisition, it bounds beyond the water's surface, in an obliquely vertical direction, a distance double that of six feet, if it is necessary that it should do so. I have seen a grilse, and not a very large one, jump upwards and forwards somewhat obliquely the length, I and another calculated, of my fishing-rod, viz., seventeen feet. Mr. Young and other observant authorities have told me, that before a portion of the mass of rock, which is the cause of the large Shin water-fall, was blasted, its first ledge was sixteen feet from the surface of the water when the river was at its average height. Salmon could spring into the water on this ledge at a bound, and then stemming the arch-formed cataract, they would ascend to the upper pools. A little below the great Shin fall is a pool, by the cliffs of the left hand bank running rapidly and deeply, called "Angus's Pool." In it I hooked one day a large grilse, which on being struck spang perpendicularly to a distance of at least ten feet—I am confident I may say twelve—above the surface of the water, and then threw a sort of descending summerset backward to the extent of sixteen or seventeen feet.

Witnessing salmon jumping will ever be a favourite amusement of mine. It completes my
admiration of the pleasantly powerful efforts and singularly interesting instincts of that fish. Last season I watched for several evenings salmon surmounting the upper Shin-fall. This cataract forms beneath it a deep, foam-bubbling pool or basin of oval shape, except that the round end at the fall is cut off; and so is the thin end at the tail of the constantly fermenting pool. On its left are high, naked, rocky cliffs; on its right are high cliffs also, but they are studded with trees and plants, amongst which the eglantine flourishes and flowers generally, and they are crowned with an attractive breadth of soft, springy green sward. Seated on it, with legs dangling from its margin, I used to watch with amusing curiosity salmon springing out of the deep and fermenting eddies ever seething and curling at the base of the rocky barrier, over which the water rushed with headlong rapidity. The lowest ledge of this barrier had been reduced, as I said before, by blasting, and was not now more than five feet above the eddy's surface. Into the water of this ledge the salmon would easily fling themselves, and then, with dorsal fins perfectly upright, and working them rapidly to and fro, they would plough their way up the sweeping torrent that was rushing over the arched rock, like a flood bursting over
the upper segment of a water-mill wheel at rest. Very few fish succeeded at the first spring, for if it was not made straight into the current, with head splitting it like a wedge, they were whirled by the force of the descending water back into the frothy pool beneath. If they sprang obliquely into the torrent, and the majority did so repeatedly, they presented shoulder and side to the furiously gushing-down stream, and the presentation of so large a resisting surface brought a larger volume of rushing water into play upon the fish, and they were rolled back as a boat would be if in ascending a rapid its broadside were presented to it instead of its prow. Neither salmon nor grilse appeared much daunted by the repeated rough rollings-over they experienced, for they were to be seen again, after a very few minutes' pause, reiterating their efforts and continuing to do so until they succeeded in making what I shall call, "the straight snout-foremost leap." Then, and it was a pretty sight to see them do it, they worked themselves upwards through the torrent, their bodies moving shortly, rapidly, and tremulously to and fro as they did so, their backs à fleur d'eau, and their dorsal fins quivering above it. Some bounded perpendicularly from the water at the base of the rock, some from four to twelve feet
out in a smoother part of the pool towards its middle, and many from a corner close by the left-hand side cliff, and these latter, the current not being so rapid at that point, succeeded in making good their ascent at fewer leaps than the others. I am perfectly convinced from minute observation that a grilse or salmon, having a sufficiency of water to give the requisite impulsion to its saltatory powers can spring a distance of twelve feet, and in some extraordinary instances a yard further out of the water, in a direction slanting upwards, nor is there any habit or practice on the part of this interesting fish that excites my surprise more acutely than its amazing locomotive capacity to pass through, over and against the swiftest and strongest rapids, whether deep or shallow. Salmon ascend falls principally of mornings and afternoons, and very few are seen making the attempt between ten o'clock, a.m. and two o'clock, p.m.

Migration of Salmon.—If all salmon deposited their ova at the same period of the year, and if all ova were hatched in the same number of days, which they would be if river water was always of uniform temperature, then we should have all salmon-fry of co-equal age, arriving at the smolt state at the same time, and of course migrating to the sea in vast shoals at one and the
same epoch. But as it is not so—as ova are deposited and incubated during six months of the year, the ages of salmon-fry must differ, and the period of migration must extend more or less over half the year. 'Tis true the "throng" time of migration is from the middle of April to the middle of May, because the "throng" spawning season is between the middle of November and the middle of December. If we allow, in consequence of the low temperature of water in the winter months, 140 days for incubation, its "throng" time will be between the middle of April and May. Twelve months afterwards we shall have smolts and general migration of them; but on that account let no one say that we shall not have some smolts and some migration of them in other months of the year.

When salmon having spawned and, having become "kelts," commence leaving for the sea the upper stream of rivers they generally do so singly, but when they have descended to the lower and deeper parts of pools, and particularly when they have reached the tidal ways they congregate in small companies. When these bands of fish reach the feeding-localities at sea, it is most probable they again unite, and so companies become regiments. These regiments are afterwards broken
up, and immigration to fresh water takes place in companies as did emigration to sea-water. Why? Because as all foul fish do not go to the feeding-beds at the same time, so they do not return to fresh water simultaneously. Those companies which reach the feeding places at sea first, leave them first, for no other reason than this, that their appetites are the first to inform them that they have consumed a quantum sufficit of sea-grown food. They would return, being "full-fed," as Mr. Young terms it, to their native rivers in larger shoals than they do, were they not scattered, injuriously dispersed, and considerably thinned by natural enemies and artificial obstructions which they encounter in the firths in their homeward journey, during which they are attacked, routed, and slain in large numbers by porpoises and seals, and impeded, caught, or driven back to sea by the greatest of all salmon-abominations, those buccaniering implements of destruction called fixed or stake-nets. These atrocious contrivances project from the shore long distances into firths, remaining fixed night and day, and as salmon travel homewards by an in-shore route, rather than a deep-sea one, incalculable is the mischief resulting from such destructive fixtures. When salmon have descended rivers to the sea
they travel northwards, and of course on their return their road runs south.

The travelling pace of salmon is slow, between two and three miles an hour. When they meet with rough streams and violent rapids they travel much faster, because if they did not call into action the full propelling powers of their fins they could not stem rapidly running waters. Before they hazard a trial of strength with the obstructing force of rapids and swift streams they take rest in some easy pool below, and this delay makes their average rate of progress be, whilst they are actually travelling, about two and a half miles an hour. I must here observe that in the spring months the locomotive powers of salmon are less by one half than in the summer months. When the temperature of the water is 70° salmon travel twice as fast as they do when the water's temperature is as low as 30°.

On re-entering their native rivers, salmon generally repose themselves in the first deep pool they come to. It may be now said that their great voyage is terminated, as they afterwards travel by very easy relays. If one day they are obliged to shoot with rapidity through strong currents, on the next they will take their ease in quiet water. After the month of June salmon
remain for several days stationary in the same pools.

In conclusion, I will state, that salmon should be considered a fresh-water fish. In fresh water it is bred, and in fresh water it remains on a general average ten months out of the twelve. The notion that salmon return from the sea to fresh water for the mere or immediate purpose of spawning is erroneous. Fish that return in the early months have their spawn in an incipient state of development, and to mature it and fit it for deposition, a period of four, five, and six months is frequently required. The truth is, salmon leave the sea when instinct tells them they are sufficiently high fed or fattened to the proper pitch nature requires, and of course for their retirement no spots can be more germane than those in which they have been bred, or in which they have previously long sojourned. Those salmon, it is true, that return to fresh water late in the season have ova far advanced towards maturity, and leave the sea not long before the spawning season. They are those exceptional fish which scarcity of food at sea, or other causes, innate or external, keep in an ill-conditioned state longer than their fellows which have fared and thrived better; or, they are those salmon that have remained longer than others
in the "kelt" or foul state in rivers before they migrated to the sea, and consequently they do not leave it until the approach of the spawning season.

THE PLATES OF SALMON-FRY DESCRIBED.

The 1st figure of plate No. VI., represents the size of the ovum, or egg, a day before it is hatched. It represents its outward appearance and very little more. Its internal appearance, or rather appearances, the art of the painter cannot fairly depict. It cannot represent, withinside a thin and distended shell, "an embryo fish, restless, and turning frequently and quickly from one side of the shell to the other, and often appearing to break out of confinement, having a conical bag attached, which is red inside and pale outside."* What the pencil cannot describe the pen can; imperfectly, certainly, for it merely tells what the investigator may observe as existing and occurring in the interior of a salmon ovum, the day before the young fish breaks through the shell.*

The 2nd figure represents the salmon foetus

* See note, page 182, on the appearances of salmon-ova at successive stages of incubation.
one day old. Its length is the seven-eighths of an inch. It is altogether imperfectly formed. Still we see something like mouth, eyes, and head. We see a fringed body, and we see a little sac depending from the region of the thorax. This little bag contains vitelline matter for the sustentation of the fish, until it can provide for itself.

In reference to the above figures, Mr. Young has written: "When the young fish are formed, and while they are confined within the shell of the egg they lie in a circular form, and the bursting of this shell is from their endeavours to get straight. The first opening of the shell invariably takes place opposite to the back fin, or middle of the fish, and, as it were by the unstringing of a bow, the tail starts out first, and thereby leaves the fish in a straight position. The head of the fish and the conical bag remain in the shell a little longer; but from the motion of the water and the fish, they very soon throw off the last encumbrance, and appear at large in the water. From the first moments of their existence, we find them formed with fear of their enemies; for, from the least shadow passing over them, we find them endeavouring to get shelter underneath the stones and gravel of the pool, to which they hurry
with wonderful alacrity. But if we stand motionless for a short time, they emerge in myriads from their hiding-places, and then we can examine them minutely and with freedom in all their forms and appendages most correctly; we see a multitude of fishes, although yet in an embryo state, and very unlike salmon; yet we are certain that they are the young of that fish, albeit their appearance is little better than that of a tadpole. The young fish are, on an average (we must mention here that they are not all of the same size; for, from the moment of hatching, we have large and small, which distinctions continue throughout all their after ages), about three-fourths of an inch long, with the provision-bag, fully one-fourth of an inch, attached to the belly, and their heads large in comparison with the body. The bag, when carefully examined, is found to be intersected with small red branches or veins, which all collect into one, and centre at the head of the fish; and from this provision-bag, through its conduits or veins, the young fish derive all their nourishment for the first five weeks of their existence."

At this period, or, say at a month old, I have not thought it necessary to give an engraving of the fish. I'll describe its appearance at a month
old. Then the fringe or edge of fins that is seen in the misshapen fry of a day old, is half worn away, except at those parts where the fins are to be. The sac or bag at the belly is more than half consumed, and the body of the fish is lengthened and getting more into fish-form. Still its shape is imperfect. Of this period, Mr. Young remarks in his pamphlet, "The young fish, though they are getting into a natural form, have now arrived at a very critical period of their existence; for the time has now come when the food provided for them by nature becomes quite exhausted, and nothing remains for each but to be its own provider in the best way it can. An entire change of being now takes place, and they must leave their former sinecure habits and work for their living; but, from the sudden transition from the one state to the other, we find that numerous deaths take place amongst them. The survivors very soon become familiar with their new state of existence, and providing meat seems an amusement, as well as a duty; for we see them leaping for sport, as well as greedily catching small objects in the water. After this they improve in appearance very fast; for at the age of two months, we have a perfectly formed fish—the transverse bars visible, and the fins distinct."
The 3rd figure on the plate represents the two months old salmon-fry. In length it is 1\(\frac{7}{8}\) inches. Its shape is perfect, and its fins are well defined. The transverse bars, beginning at the lateral line, are visible; but not so brilliant and large as they afterwards by degrees become.

The 4th figure is that of a salmon-fry four months' old, or a day or two more or less, and 2\(\frac{1}{2}\) inches in length. The transverse bars, commencing above the lateral line, have increased in size and depth of colour; and little spots are visible on the back. The fins are very large in proportion to the size of the fry, showing that it is the young of salmon, and not of any small species of salmonidae. The fins of a trout of the same size would be much smaller.

The 5th figure is that of a young salmon, at the age of six months. The drawing is that of a specimen more perfect in shape and colour than ordinarily. It is 3\(\frac{1}{3}\) inches in length; its colours are deepening, and the transverse bars are more largely developed. Its fins are disproportionately large in respect to the size of the body. Hitherto its growth has been rapid; but at its present age it, generally speaking, enters the cold months, and during four of them, its growth, chiefly from want of insects for food, is very slow.
The 6th engraving on plate No. VII. is that of a salmon-fry of between eight and nine months old. In length it is four inches, and it is now more deeply marked with transverse bars and dorsal spots than at any other period. Those spots are sometimes of a pink hue, sometimes they are purple-coloured, and sometimes black. The latter colour they assume after death. The fish now resembles the little trout, called the parr; but its fins are much longer than those of that little fish, and its whole shape is much less perfect. Not observing these marks of distinction has led to the confounding of salmon-fry with parr; calling them, indeed, "parr," as Mr. Shaw and his followers do; whereas the parr is a distinct adult fish, of the river-trout species. I regret that, owing to the season of the year at which I made the application, I could not get a specimen of the parr, to have it engraved and coloured, and placed side by side with the salmon-fry represented on the plate I am now describing. In answer to my application, made from London, in November last, to Mr. Young, at Invershin, he wrote: "The parr you want cannot be got at this season, in consequence of the flooded state of the waters: but from the description I will give, the artist can easily engrave it. [I did not think so, and there
fore no artist was asked to make the attempt.] A full-grown parr is the length of a salmon-fry of nine months old; but its fins are little more than half the size of those of the fry. It is fuller and darker in the body, and in form like that of a well shaped common trout. Its cross-bars, or finger-marks, as they are frequently called, lie closer together on the body than the transverse bars do on that of the salmon-fry.”

The 7th figure is that of the fry at the age of ten months. In length it is about four and a half inches. The transverse bars are becoming smaller, diminishing, and becoming paler above and below the lateral line. It is a fish of lighter general hue than it was before.

The 8th engraving on plate No. VIII. approaches more to perfect resemblance, representing the salmon-fry at the age of eleven months. It is five inches in length, and the transverse bars are rapidly fading away; that is, they are becoming eclipsed by the gradual over-spread of a lighter coating. This coating consists of silvery scales, descending in increasing brilliancy from above the lateral line over the transverse bars. The change is fairly represented in the plate. On a salmon-fry of this age, Mr. Young writes, — “The new scales and silver coating begin to appear, the transverse bars
begin to look more dimly through the scaly coating, and we now see the young fish fairly undergoing another wonderful and interesting change, and rapidly advancing towards perfection."

The 9th and last figure, is that of a smolt or salmon-fry one year old. The transverse bars are apparently gone, completely covered with silver scales. The young fish, "clean as a smelt," has assumed its migratory coat, and in colour and shape, if not in size, puts in a clear title to its salmon descent. It is now completely silver-sided. Its silver scales are easily rubbed off, and when that occurs the transverse bars become again visible, showing what caused the visible disappearance of the latter. The length of the specimen here represented was five and a half inches. Of young salmon at this stage, Mr. Young says: —

"They have now got on their migratory dress, and are fully prepared to leave the streams of their nativity for the trackless ocean; they are now full of mirth and activity, gathering together, in shoals, and sporting freely among the waters; feeding greedily, and at this time, they will very readily rise at and take a fly, either natural or artificial. We have various accounts of their size at this age. Some make the smolts in general eight inches long; some allege to have seen them
ten inches, while others have ventured even as high as fourteen inches long. We could mention numbers of half-and-between experiments, from which we have various calculations, and although we are convinced that these experiments were made with the best intentions, yet they fell very far short of the truth; as the fry were often placed in ponds and places of confinement, and their ages, both when they were put in and taken out, unknown. From these imperfect experiments have arisen all the conflicting opinions regarding their size in the smolt state. In all the many congregations of smolts I have examined, their individual length varied from four to six inches, but in the great majority of instances the length was about five inches."

The reader is urged to bear in mind that our larger drawings are after specimens "born and bred" in the river Shin, and not from ova or fry taken from that river and transferred to spawning-beds or ponds fed by water proceeding from another source. On the contrary, the experiments of Mr. Shaw were made on ova and fry taken from the waters of the river Nith, and removed to experimental basins supplied by "a stream of pure spring water," or by that of "a rivulet." Hence, we presume, the tardy growth of his fry; his "con-
verted parr," as he designates it, or smolt, being two years old, whilst ours is only one. At two years old his smolt measures about six inches in length; ours at the age of one year measures five and a half inches, and at the age of two years it will be most probably a well-conditioned salmon, weighing from nine to fourteen pounds, or at any rate it will be a grilse-kelt, averaging between two and three feet in length, at a very moderate calculation, and having been of the weight of six lbs. or thereabouts at the age of eighteen months, that is at the time or nearly so of its spawning for the first time. At this age of eighteen months, Mr. Shaw's engraved specimen is about five and a half inches in length, and its transverse bars distinctly visible. It could barely weigh six ounces. Ours at that age would weigh as many pounds or more, and would be much nearer thirty-six inches in length than five and a half inches. A very great error exists somewhere. Is it ours or Mr. Shaw's? Time will tell.
CHAPTER II.

THE BREEDING OF SALMON ARTIFICIALLY.

In the procreation of salmon art can aid nature by study of nature's laws, and then carrying into practical effect the result of that study. Art can remove obstructions nature meets with in her operations—can render a field fitter for those operations than it would be under natural circumstances; but art can only be a coadjutor, and I therefore think that the epithet "artificial" applied to the breeding of salmon or any living creature is not altogether correct. Though I have used it, I do not wish it to be understood in any but a limited sense. I am going to show how salmon may be bred in part artificially. The beneficial results of being enabled to propagate the salmon tribe by controllable artificial adjuncts are many. They will make themselves self-evident to the reader of the following pages.

The first thing to be taken care of in this way of breeding salmon is that the spawning-beds which are to be artificially formed, be supplied if
possible with the water from which the ova are taken. In making experiments on the growth of salmon-fry this precaution is more absolutely necessary than when one is breeding for the sole sake of stocking a river. In all cases it will be advisable that the spawning and rearing-ponds be not fed with water of a temperature widely differing from that from which the spawn has been procured.

With these few general remarks I will transcribe the notes I have received from Mr. A. Young on this interesting and important subject. To give the seed, he says, the same advantages as that naturally spawned in rivers, the artificial breeding-ponds should be erected in the immediate vicinity of or in the river, and the ponds should be fed by a small stream, or "lead" taken from the river, so that the temperature and all the conditions of the one may in every respect agree with those of the other. At the spot you take the "lead" off the river you commence the erection of a wall to shut out the main current. The wall may be built in the river by the side of one of its banks, and its height then is to be greater than the highest flood-marks of the river. In the bottom of the wall, where it takes the "lead" off the river, an opening or drain-mouth is to be constructed of
the width of the current you wish to flow through your ponds inside the defending wall. This opening at the upper end of the wall is to be so framed that whether the state of the river is low or high, the supply of water to the pond will be neither injuriously diminished nor increased. The drain-mouth, or opening in the wall is to be secured by a strong iron grating, the bars of which are to be half-an-inch apart. This grating will prevent the accumulation in the ponds of anything hurtful to them.

The bed of the ponds must be dug up to the depth of about five feet, and they must be nine feet in width, and eighteen in length. Their bottom must be lower by five feet than that of their feeder. The bottom, however, must not be quite flat, but graduated, rising from the end furthest from the head of the current towards the opening or drain-mouth. The necessary inclination can be given to the bottom of the pond, by beginning with a layer of gravel one foot thick at the furthest end, and finishing off towards the mouth with a layer of gravel, eighteen inches in depth. The bottom of the pond will thus become an inclined plane. The ova are to be deposited at the top of the gradient, where you have finished off with a layer of eighteen inches of gravel, in
order that they may have the benefit of sharply running water. The lower part of the inclined plane, or the deepest part of the pond, suits best the fry after incubation.

The walls that are to secure the ponds must be strongly built of rough stone. No lime must be used in the construction of the walls, or of any thing connected with the ponds. Every one ought to know the destructive effects of lime upon fish. To secure the ponds from the entrance of the smallest fish, besides the iron grating already mentioned, there must be another fixed inside it of copper wire closely interlaced, so closely as to prevent the possibility of the smallest trout passing through the interstices. If a diminutive trout should enter, it would devour the fry as soon as they were hatched. Each end of the pond should be secured in the same way. At the end where the pond-water runs out there should be if possible a fall into the river, which would effectually prevent the ascension to the ponds of any predatory fish.

Some persons have tried artificial breeding in ponds supplied with water from springs and hill-burns, but in such trials no sensible person ought to expect satisfactory results, or at any rate results similar to those that would be derived by the use
of ponds constructed in salmon-rivers, or fed by water directly emanating from them. Both the development of the fish in ovo and ab ovo depends upon the temperature of the water, and we know that a single frosty night will reduce by many degrees the temperature of rills and rivulets, whereas the currents of large rivers are little affected by it. Fry hatched in ponds fed by these hill-streams must be stinted in growth — kept in a status quo during many weeks — and they can never arrive at the smolt state in the same period of time as fry produced and bred in the waters of rivers. These latter fry are in their natural element — natural in its temperature and in the food, insects and so forth, it produces. On the contrary, fry bred in ponds fed by springs or hill-burns are, as it were, subjected to a different climate, strange and unnatural to them, barren, or nearly so, of insects, and foreign to their innate tastes. Their progress in growth, therefore, cannot equal that of fry bred in favourable localities.

When the ponds are perfectly formed and constructed they should be filled with water, and it should be allowed to run freely into and out of them for a few days previously to depositing the spawn in them. This is necessary in order that the newly laid gravel may be washed well, the
beds properly seasoned, and all mud or alluvial matter got rid of. The artificial spawning-beds must be reduced as nearly as can be to the condition of the naturally formed ones of rivers.

The next step to be taken is towards procuring proper spawn for deposition in the ponds. To do so we must watch carefully some natural spawning-pond of the river at the time when the operations of spawning are going on, and we must capture a pair of salmon that have actually commenced the spawning process. If we do not, we cannot be sure of procuring spawn in a ripe state. We must avoid capturing at random any pair of fish we may see on the spawning-bed, because many consorted males and females are to be seen hovering about the spawning-grounds several days before they begin depositing their spawn. If from such fish ova are expressed by manipulation they will be found in an immature state, their pores not as yet open for the reception or absorption of the milt, and expressing it over them will not produce impregnation. On the contrary, when a pair, of course, male and female, that have commenced spawning are captured, their ova and milt will be found in the mature state required, or at least, a portion of them. A vessel, can, pail, or small tub, must be ready, containing a small portion of
clean gravel from the river, and as much river water as will cover the gravel, and the seed about to be deposited in it. The female salmon just captured must be held up by the head over the vessel with one hand, whilst with the other hand gentle pressure is made down the belly of the fish. This pressure will cause the expulsion of all the ova that are mature, which will be received in the vessel. The male fish is then to be held and pressed in the same way, which will cause the emission of mature milt into the vessel. The fish are to be returned to their native element, where, if the manipulator be not a rough one, they will speedily recover, and when the remaining spawn, not artificially forced from them, becomes mature they will deposit it as if nothing had happened.

Having expressed ova and milt into the vessel, it must be shaken so that gravel, water, milt and ova be properly mixed, and that no ova escape from coming into contact with portions of milt. If any do they will not be impregnated. On the contrary, the ova that are touched by the milt are impregnated, and if properly cared for will in due time produce young salmon.

I solicit the attention of the owners of rivers to the following great fact: — Salmon-spawn artificially expressed from parent fish, and treated in
the manner just now directed, may be conveyed without injury very long distances — from rivers in one country to rivers in another. Salmon-spawn containing the vivifying germ may be taken from any of the rivers of the British isles, and conveyed not only to any river on the continent of Europe, but to those of other divisions of the globe. The time may come when it may be conveyed to Australia, Van Diemen's Land, &c., in order to colonise the rivers of those countries with the finest and most valuable fish indigenous to the nor'ard rivers of the northern hemisphere. After the ova and milt are expressed, and mixed together in the sand and water of the vessel prepared to receive them, nothing more is necessary to preserve them on a voyage than a change of water every twelve hours. At each conclusion of that interval of time, the stale water is to be poured off, and the same quantity of pure fresh water substituted.

To return to our artificial pond now ready for the reception of the impregnated spawn. It must be imbedded at the head of the pond — at the commencement of the inclination of its bottom, in a small trench about five inches in depth, formed longitudinally with the current and not across it. The spawn must not be laid all of a heap in the
trench, but carefully mixed with gravel all over its bottom, and then covered in with the gravel that has been excavated in forming the breeding-furrow. The trench and its covering must be on the slightly inclined-plane principle. The gravel with which the trench is covered in must not be pressed down, except very slightly, in order not to prevent the free percolation of the water, which must have full ingress and egress to and from the spot where the seed lies deposited. The action and contact of moving water are essentially necessary to perfect this strange incubating process. Without them ova will be non-productive, for placed in gravel at the bottom of still, or sluggishly running water, they will putrify, or, to use a generally known expression, they will be "addled."

For the purpose of making experiments, such as watching the alterations that take place in the ova during their progress towards expulsion of the foetus, small wire baskets may be used. In them spawn mixed with gravel is to be placed, and they are to be put into the trenches of the ponds. They are to be taken out from time to time to ascertain the condition of the ova, some of which can be extracted and preserved for the information of students in natural history. The
baskets can be replaced without any injury to the ova that remain in them. The breeding trenches described in the paragraph preceding this, destined for the propagation of stock or store salmon, should never be disturbed.

The trenches of artificial ponds do not require to be made so deep as the excavations salmon make when they form their own spawning-beds, because, in ponds rightly constructed, the volume and force of water in them, and passing over and through the gravel of the artificially constructed beds, scarcely ever vary. It is not so with the water in which salmon form their breeding-beds. They are subjected to great variations in volume and strength of water, and if they were not deeply excavated, under a sufficiently resisting weight of gravel, it and them would be frequently washed away, and destroyed by the force of winter floods.

When the spawn is fairly deposited in the ponds, either by means of trenches or wire baskets, all that the breeder has to do is to see daily that the grating through which the water feeding the ponds flows is free from all obstructions—that the stream flows into ponds fairly and regularly, and that their supply of water is always of the proper uniformity, neither diminished by dry
weather and low water in the river, nor influenced in any way by floods. If every thing is done as recommended, the ova will be hatched in seasons of high temperature in a period of about 100 days. Ova deposited in the early part of September, taking the average temperature of late seasons, will be hatched in 90 days, or thereabouts; but ova deposited in November, subjected as they must be to the low temperature of the winter months, will not be incubated or hatched in less than from one hundred to one hundred and forty days. The variation will depend on the mildness or severity of the winter.

Salmon-fry bred in artificial ponds may be allowed to remain in them one whole year, that is, until they have assumed their silver-hued, migratory dress. They are then to be turned free into the river, when they will go to sea and return from it as regularly as those fish which have been produced by the natural process. There are two ways for stocking rivers with salmon, whether they be rivers in which salmon have never bred, or rivers in which they formerly bred, but in which the race is partly or totally extinct by the carelessness or mismanagement of man. The first is by conveying to them impregnated
ova, and burying them in the gravel of running water after the manner already shown. The second method is by transferring to them parent fish of both sexes, at the time of their commencing in their native rivers the operations of spawning. The transferred fish must be placed in a deep pool of the new river, from which they will ascend and select appropriate spawning localities.

The laws regulating the salmon-fisheries in Scotland and Ireland do not require material amendment. The chief one required is the limitation of net-fishing, cruives, and so forth to the 20th August. Angling, — I mean fly-fishing for salmon, — may be permitted for a month later. The rivers of England and Wales, without any exception, should be placed under the nearly wholesome restrictions to which happily those of Ireland and Scotland are subjected.

I conclude these pages cheered by the hope that they will lead to the propagation and preservation of salmon on a far more extended, liberal, and enlightened scale than hitherto—that at a time when so much attention is directed to waste lands, they will cause it to be likewise directed to waste waters, in which exist abundant fertile elements of most valuable production, in
the shape of food, as delicately palatable as it is highly nutritious, and which elements require less care and labour to render their cultivation more profitable than that of any portion of waste land in the empire.

No, this volume must not be concluded with a utilitarian sentence. Our first sporting love — fly-fishing — must not be forgotten. *On n'oublie jamais ce qu'on a une fois aimé.* For what I loved once and love still, the delightfully animating practice of salmon-fishing, let me offer up a parting wish — that no one may find in my treatment of the art in the first portion of this little tome any thing that does not smack, slightly at least, of amusement and instruction!

THE END.

LONDON: Spottiswoodes and Shaw, New-street-Square.
WORICS

"A volume full of practical directions touching the different kinds of angling; written in an agreeable style, as if the author were talking to his readers."

SPECTATOR.

"There is no book with which we are acquainted, professing to be 'a plain, practical, sensible book' on the subject, so well entitled to that praise as the work before us."

MORNING CHRONICLE.

THE ROD AND LINE; Or, Practical Hints and Dainty Devices for the sure Taking of Trout, Grayling, &c. By Hewett Wheatley, Esq. Senior Angler. Fcp. 8vo. with Nine coloured Plates, 10s. 6d.

"We have perused carefully Mr. Wheatley's book, and have great satisfaction in declaring it to be a most valuable instructor and guide to the fisherman who pursues the noblest and liveliest inhabitants of the stream; viz. the salmon, the trout, and the grayling."

MORNING POST.

"Mr. Wheatley does not attempt to teach the tyro, but only to furnish hints and directions to the advanced angler. These hints are original, and relate to various arts, and what in the trade are called 'secrets,' by which the finny tribe may be tricked on to the hook."

SPECTATOR.

"Besides smart, pungent, and practically profound dissertations on the rod and line, this clever volume teems with practical hints. . . . The book is pleasantly written, and beneath a semblance of levity will be found enunciated a mass of sterling information."

BELL'S LIFE IN LONDON.

THE FLY-FISHER'S ENTOMOLOGY. Illustrated by coloured representations of the Natural and Artificial Insect; and accompanied by a few Observations and Instructions relative to Trout-and-Grayling Fishing. By Alfred Ronalds. Fourth Edition, corrected; with Twenty copper-plates. 8vo. 14s.
IV.
INSTRUCTIONS TO YOUNG SPORTSMEN in all that relates to Guns and Shooting. By Lieut.-Col. P. Hawkcr. New Edition, corrected, enlarged, and improved; with Eighty-five Plates and Woodcuts. 8vo. 21s.

V.

VI.
PRACTICAL HORSEMANSHIP. By Harry Hieover. Uniform with "The Pocket and the Stud." With Two Plates, one representing "Going like Workmen;" the other, "Going like Muffs." Fcp. 8vo.

VII.
THE STUD FOR PRACTICAL PURPOSES and Practical Men: being a Guide to the Choice of a Horse for use more than for show. By Harry Hieover. With Two Plates, one representing "A pretty good sort for most purposes;" the other, "‘Rayther’ a bad sort for any purpose." Fcp. 8vo. 5s.

VIII.
THE POCKET AND THE STUD; Or, Practical Hints on the Management of the Stable. By Harry Hieover. With a Portrait of the Author on his favourite Horse "Harlequin." Fcp. 8vo. 5s.

IX.
STABLE TALK AND TABLE TALK; Or, Spectacles for Young Sportsmen. By Harry Hieover. New Edition. 2 vols. 8vo. with Portrait, 24s.

X.
HAWBUCK GRANGE; Or, the Sporting Adventures of Thomas Scott, Esq. By the Author of "Handley Cross; or, the Spa Hunt." With Eight Illustrations by Phiz. 8vo. 12s.

London: Longman, Brown, Green, & Longmans.